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Abstract—Many scientific and engineering computations rely
on the scalable solution of large sparse linear systems. Pre-
conditioned Krylov methods are widely used and offer many
algorithmic choices whose performance varies depending on the
characteristics of the linear system. In previous work, we have
shown that the performance of different Krylov methods at
small scales can be modeled using a small number of features
based on structural and numerical properties of the input linear
system. In this paper, we focus on comparing the scalability of
parallel Krylov methods given different input properties without
requiring extensive empirical measurements. We consider the
PETSc implementations of Newton-Krylov methods to produce
scalability rankings based on our new comparative modeling
approach. The model-based ranking is validated by comparison
with empirical results on a numerical simulation of driven fluid
flow in a cavity.

I. INTRODUCTION

The solution of large sparse linear systems of the form
Ax = b, where A = [aij ] is an n× n matrix and b is a given
right-hand-side vector, is central to many numerical simula-
tions in science and engineering and is frequently the most
time-consuming part of the computation. Advancements in
these fields rely heavily on the efficient solution of these sys-
tems. On massively parallel architectures, iterative solvers [1]
have gained popularity for approximating the solution x of
sparse linear systems because they typically scale better than
direct methods [2], which are based on the factorization of
the coefficient matrix A into easily invertible matrices [3].
There is no clear boundary between classes of iterative and
direct methods, however, as most iterative approaches exploit
ideas and techniques from sparse direct solvers in the form of
preconditioners, which increase the robustness of the iterative
schemes without sacrificing scalability. Because of the relia-
bility and good performance of iterative approaches, a very
large number of methods and implementations are provided
in such numerical software packages as PETSc [4], [5] and
Trilinos [6].

With the growth in the number of solution methods, appli-
cation writers face an increasingly difficult task in choosing
a solution method that will perform best for their specific
problem. Unlike other classes of algorithms, where complexity
analysis is sufficient to inform such choices, preconditioned

Krylov methods that have the same complexity may perform
very differently, depending on the characteristics of the input
matrix A. In general, the selection of the best-performing
numerical method is extremely challenging. Determining it
necessitates the comparative performance of various numerical
methods on small and large scales.

In our previous work [7], we show the performance of
different Krylov methods at small scale using machine learning
techniques [8]. Our approach involves constructing a train-
ing data set by solving linear systems with multiple solver-
preconditioner combinations and then classifying the combi-
nations based on the time taken to solve a linear system with
the given solver-preconditioner combination. The combination
that solves the system in the least time is chosen as the
base case for that system. Using the base case timing, other
combinations are labeled as “good” and “bad”.

When given a sufficiently varied set of input linear systems,
the machine learning (ML) approach successfully captures the
convergence behavior of solver configurations. However, the
model was built based on the data collected on a small number
of processors (72), and therefore does not capture differences
in solvers’ performance as larger problems are solved on
larger processor counts. At the same time, collecting separate
training data sets for different processor counts is prohibitively
expensive and, for very large numbers of processors, simply
infeasible. In this work we introduce an analytical approach to
scalability-based ranking for different Krylov methods. This
approach can be used in conjunction with the ML-based
method to enable solver recommendations at different scales
of parallelism.

In this paper, we present the details of our new
communication-based model and describe how we can com-
bine this ranking with the previously developed ML-based
model to produce parallel preconditioned Krylov method rec-
ommendations. We validate the effectiveness of this model by
applying it to the sparse linear system solution in a nonlinear
PDE-based application for simulating driven cavity fluid flow.

This paper is organized as follows. Section II discusses
the related work on the analytical and empirical modeling of
Krylov methods. Section III focuses on the methodology of our
modeling approach and shows the scalability ranking obtained



with the model. Section IV covers our empirical evaluation
of the model results. Section V outlines the conclusions and
future work.

II. RELATED WORK

Both analytical and empirical modeling approaches are used
to evaluate parallel linear algebra algorithms. A sequential
algorithm can be described by its predicted run time, expressed
as a function of its input size. Analytical evaluation of a par-
allel algorithm involves not only the size of the input but also
machine characteristics such as the number of processors and
communication parameters including overheads. In both the
sequential and parallel cases, empirical modeling is based on
the observations made from experiments with the algorithm.
In this section, we present some examples of research into
both types of models.

1) Analytical modeling of distributed-memory linear alge-
bra algorithms: The authors of [9] focus on the inter-processor
communication costs of computers and the communication
costs inherent in parallel algorithms. They explain the gap
between the theoretical measurements and analytical mea-
surements of a parallel algorithm and encourage developers
to create algorithms that are efficient not just theoretically
but also practically. Communication occurs when a processor
needs the data that is not available in its memory. Once a
processor gets the required data from other processors, it does
not need communication unless the data has been modified
by the processors that own the data. One common technique
for avoiding such communication is handled by replicating
the data as local copies and re-accessing these copies. This
is referred as the replication-communication relationship. The
authors focus on the need for a better description of the
relationship between communication and replication and an
effective use of simulation and profiling tools.

LogP [10] is a computation model for parallel computation
designed to enable the development of efficient and portable
parallel algorithms. The authors convey that such algorithms
typically align well with certain machine parameters. In par-
ticular, bottlenecks are connected with how algorithms interact
with the computing bandwidth,the communication bandwidth,
and the number of processors within a common hardware
organization.

Another work particularly relevant to this category of mod-
eling is [11] which predicts the performance of the constituent
operations of Krylov methods on extreme scale computers via
a model that includes topology and network acceleration. They
motivate the development of pipelined implementations by
observing the serious bottlenecks that result from the latency
costs of reduction operations.

2) Empirical modeling of distributed-memory linear alge-
bra: Fettig et al. have performed recent work [12] in analyzing
the scaling behavior of parallel Krylov methods and multigrid
methods from PETSc and hypre [13]. The solvers considered
are Conjugate Gradient, GMRES and BiCGStab along with
preconditioners Block Jacobi, ASM and multigrid methods.
The results were collected on a Pentium III cluster and Itanium

1 cluster. Symmetric and nonsymmetric problems with the
biggest problem involving 64 million unknowns were used.
The results indicate that good scaling can be achieved on
large scales for these solvers. They present scalability results
for up to 256 processors on the Linux clusters. In this paper,
we present scalability results with up to 12,288 processors
for more solver methods than the ones covered by Fettig et
al. In addition, we combine the communication-wise ranking
with scalability ranking to decide the overall scalability of the
Krylov methods.

III. METHODOLOGY

This section describes our approach to modeling two aspects
of the performance of parallel Krylov methods: (1) conver-
gence behavior and (2) parallel overhead. In this work, we
consider a subset of the solvers and preconditioners available
in PETSc: Conjugate Gradient (CG), BiConjugate Gradient
(BiCG), BiConjugate Gradient Stabilized (BCGS), improved
BCGS (iBCGS), Generalized Minimal Residual (GMRES),
flexible GMRES (FGMRES), and TFQMR. We use the fol-
lowing preconditioning methods: Additive Schwarz (ASM),
Jacobi and Block Jacobi along with no preconditioning.

For modeling convergence behavior, we use a supervised
machine learning approach described in Sec III-A, which relies
on a training dataset consisting of small-scale parallel timing
results for a variety of linear systems and preconditioned
Krylov methods. Even at a fixed number of processors (in
our case, 72), creating the training dataset required us to solve
tens of thousands of linear systems. Applying this approach to
modeling the scalability of solvers for larger processor counts
is infeasible because of the prohibitive computational time.
Furthermore, no comprehensive matrix collections of large
problems are available. The popular University of Florida ma-
trix collection [14], which we used to collect our training data,
consists of mostly small systems and therefore attempting to
solve them on a large number of processors would not be use-
ful for determining the best solution method for much larger
problems. Hence, we introduce an analytical communication-
based ranking of solution methods (described in Sec III-B),
which enables solver predictions at large processor counts.

A. Solver classification using machine learning

In this work we suggest that the solver predictions should be
made based on the computation and communication ranking
both. The machine learning model depends on the computation
time for making optimal solver suggestions. However, some
solvers fail to converge, in which case the ML model can
predict solvers that do not converge. While the ML model
captures the computation time, using the ML model in com-
bination with the communication model will build a stronger
recommendation system.

Therefore the solver predictions should be made considering
the scalability ranking as well as the ranking based on compu-
tation time. The computation ranking is achieved by applying
machine learning algorithms for solver classification. Building
a machine learning model involves the following steps:



For constructing the model, we use machine learning to
classify solvers based on their convergence behavior. The
training set contains features of over 1,800 matrices from the
University of Florida Sparse Matrix collection and the solution
times of 49 PETSc solver-preconditioner combinations (see
Sec. III-C for the complete list) on 72 processors. We use
the supervised learning approach from our prior work [7] for
identifying the “good” solver-preconditioner combinations. To
create the model, we construct a training dataset containing
the following data.

1) Features: Initially, we collected 34 linear system proper-
ties, which were reduced to the following subset of six features
used for the training and solver prediction. The structural
and numerical properties of the matrix, such as the number
of non-zeros and matrix norm are computed by PETSc. The
full feature set consists of 34 features. To reduce the cost of
feature computation we choose a subset of the full feature
set to classify the solvers, eliminating the size-based features
such as number of columns of the matrix. The reduced set has
only 6 features. This set was generated by applying multiple
attribute evaluation algorithms namely, CFSSubset Evaluator,
ChiSquared Substitute Evaluator and InfoGainAtttribute Eval-
uator [15]. The search methods we used were Greedy Stepwise
and Ranker [16]. The features that were ranked highly by the
majority of the evaluators were selected as the subset. The
reduced feature set has inexpensive features that are not size-
based. These features are described below.

1) Upper Bandwidth: The upper bandwidth of the matrix
is the smallest number u, such that any entry ai,j = 0
when i<j − u.

2) Lower Bandwidth: The smallest number l, such that any
entry ai,j = 0 when i>j + l.

3) Numeric Value Symmetry 2: This gives the numerical
symmetry of a matrix A which is given as follows:
1 − (1/2

∑m
i=1

∑m
j=1 |si,j |/

∑m
i=1

∑m
j=1 |si,j |ai,j |).

Here S = (sij) = 1/2(A − AT ), is the anti-symmetric
part of matrix A.

4) Row Variance: This is the measure of the spread for the
rows of the matrix .

5) DiagSign: This feature gives the diagonal sign pattern. It
has five possible values. DiagSign is -2 if all the entries
of the diagonal are negative, -1 if all the diagonal entries
are non-positive, 0 if all the diagonal entries are zero, 1
if all the diagonal entries are non-negative, and 2 if all
the diagonal entries are positive.

6) DiagonalNNZ: The number of non-zero entries in the
matrix diagonal.

2) Solver-preconditioner combination: Next, we assign a
unique hash ID to each solver/preconditioner combination.
There are 154 unique combinations of 11 solvers and 5
preconditioners along with some parameter configurations
such as amount of overlap in PETSc’s (restricted) additive
Schwarz preconditioner (ASM). This unique id in combination
with the matrix features and a class label (“good” or “bad”)
generates one data point in our training set. The threshold for

“good” solvers is chosen by varying the threshold parameter
b, where b ∈ [0, 1]. We set a threshold of 0.45 for our
experiments. The overall accuracy of the machine learning
algorithm is given by combining the model’s accuracy in
identifying the “good” solvers as “good” and “bad” solvers
as “bad”. The “good” solver accuracy of the model can be
determined by the algorithm’s correctness in identifying the
“good” solvers as “good” because we are concerned only
about the solvers that perform well. The accuracy is measured
by the TPR accuracy as shown below:

TPR = TP/P = TP/(TP+FN)

Here TPR is the true positive rate, which gives the correctly
identified “good” solvers. TP is the true positives (“good’
solver instances) identified by the model and P is the actual
number of positive instances. FN is the false negatives and
N is the actual number of “bad” solver instances. The “bad”
solver accuracy is computed similarly, replacing the number
of “good’ solver instances with the number of “bad” solver
instances.

3) Class label: A binary label (“good”, “bad”) is assigned
to each solver-preconditioner combination based on its solve
time for the linear systems it solves. Random forest classifier
yielded overall accuracy of 98.8% and TPR accuracy of
98.4% (TPR is the most relevant performance metric because
our goal is to suggest solvers that will likely perform well).
With a train-test split of 66-34%, the overall accuracy obtained
is 98.6% and the TPR accuracy is 98.1%.

In addition to performing 10-fold cross validation and a 66-
34% train-test validation, we also validated the accuracy of
the model by applying it to the driven cavity flow simulation,
which involves the solution of a nonlinear PDE discretized on
a regular 100x100 grid. We consider five different physical
configuration with varying Grashof numbers of 1, 10, 100,
1,000, and 10,000. During each simulation, at each nonlinear
iteration, multiple sparse linear systems (order 4,000,000 with
approximately 80,000,000 nonzeros) are solved.

B. Characterizing communication of Krylov methods
To address the challenge of modeling the scalability of

algorithms, we introduce an analytical ranking of methods
based on comparing the communication performed by the
different preconditioned Krylov methods. While this ranking
does not provide a complete performance model, it improves
upon machine learning models that rely on matrix features and
are necessarily trained on small-scale inputs. Most importantly,
it enables more accurate selection of preconditioned Krylov
methods at different parallelism scales.

From the user’s point of view, the process for selecting
a solution method for a new linear system consists of two
steps. First, the ML model is applied to generate a list of
“good” solvers (e.g., those likely to converge and perform
well). Second, if the system is sufficiently large (i.e., high
levels of parallelism are required), we compute the intersection
of the ML-generated list and the analytical solver rankings and
select the top-ranked solver that is present in both.



1) Comparing Krylov method implementations: In this
work, we analyze the solver and preconditioner algorithms
provided by PETSc to measure the inter-process communica-
tion and identify the operations that perform communication
for each iteration. Figure 1 shows the matrix and vector
operations in the aforementioned algorithms in PETSc. We
analyzed these operations for each solver and preconditioner
algorithm. The result is a communication-wise ranking for the
preconditioned and non-preconditioned cases. In this stage,
we analyze communication alone since solution time is not
required. We count the number of times the operations that
perform communication with other processors are called for
each algorithm. The operations are discussed in detail later
in this section. We verify these results by comparing them
with the empirical measurements obtained by running real
applications on the Edison Cray XC30 machine at NERSC.
The result is a ranking based on the linear system solution
time. For the empirical measurements, we solve five regular
structured grids, resulting in square linear systems with up to
4,000,000 rows and columns and approximately 80,000,000
nonzeros. We solved the linear system in parallel with all
the combinations of Krylov solvers and preconditioners and
also without preconditioning. We present the communication
analysis in the next section and discuss its validation detail
in Section IV. Apart from the variation of solver and precon-
ditioner, we use the default settings for other parameters in
solving the system and analyzing the algorithms. We used the
current version of PETSc (3.8) at the time of this writing.

There are two types of costs associated with a solver
scheme: communication and computation. Communication in
Krylov methods includes global reduction operations (for
computing vector norms and dot products), matrix-vector
products, and nearest-neighbor scatter/gather operations. To
rank methods based on their scalability alone, we focus on
the differences in the amount and type of communications
between methods when solving the same problem on the same
number of processors. We do not consider computation cost
differences here because they are captured by our machine
learning model (Sec. III-A).

Table I shows the operations that perform communication
for these solvers and preconditioners. The table also presents
their cost variables that will be used throughout the rest of
the paper. The list in the table excludes operations that are
common for all solvers and preconditioners. We compare com-
munication cost by computing the difference in the number
of calls made to operations that perform communication. We
focus on the Krylov solver iteration and do not include initial
setup, I/O functions or other functions that are called once.
Because the number of iterations varies for each solver, we
consider the normalized calls per iteration value instead of the
raw counts.

In the following paragraphs, we describe how we determine
the values for the communication cost variables for the differ-
ent communication-containing functions listed in Table I. Here
we focus only on communication, not on the computation in
these kernels.

Fig. 1: Matrix and Vector operations in PETSc.

a) Reduction operations: Computing the norm of a dis-
tributed vector (VecNorm, the dot product of two vectors
(VecDot, VecTDot) or a combination norm/dot product
(VecDotNorm2) requires one or more global reduction op-
erations (reducing an array of values to a single scalar). We
designate the communication cost of a reduction operation by
q = log p, where p is the number of processors. The VecMDot
function computes multiple dot products. The parameter k
in VecMDot_MPI (the parallel implementation of VecMDot
in PETSc) stands for the restart parameter which exists only
in GMRES and FGMRES. VecMDot_MPI reduces x data
items, where x ranges from {1, 2, . . . , k}, where k is the restart
parameter. The reduction cost of a single value is q and the
sum of the series 1+2+3+. . .+k is k(k+1)/2, resulting in the
total cost of q∗k(k+1)/2. The MPIU_Allreduce function is
a replacement for the MPI_Allreduce. The latter combines
values from all the processes and sends back the result to all
the processes. The operation involves a constant amount of
data (≤ 96 bytes or 12 double precision values). This value
is constant because it is not dependent on the processor count
or problem size.

b) Matrix-vector product: The communication cost
of matrix-vector multiplication operations (MatMult and



TABLE I: Matrix-vector operations with communication

Operation Description Cost Variable
MatMult Computes matrix-vector product: y = Ax m

MatMultTranspose Computes matrix transpose times a vector y = A′x m
VecNorm Computes norm of the vector: r = ||x|| q
VecDot Computes the dot product of the vectors x and y q

VecMDot Computes one or more vector dot products. q
VecMDot MPI Computes vector multiple dot products and performs reductions q ∗ k(k + 1)/2

VecTDot Computes indefinite vector dot product: yHx, where yH denotes the conjugate transpose of vector y q
VecDotNorm2 Computes the inner product of two vectors and the 2-norm squared of the second vector q

PCApply Performs the preconditioning on the vector cpc
PCApplyTranspose Applies the transpose of preconditioner to a vector cpc

VecScatterBegin Performs a scatter from one vector to another v
MPIU Allreduce Determines if the call from all the MPI processes occur from the same location in the code. w

MatMultTranspose) can be estimated as follows. Given
p processors, each processor sends its local nonzero values
per row to all other processors and receives partial sum
contributions to the local vector elements. Let us refer to a
processor’s average number of nonzero values per row as n.
Therefore the total communication per processor here includes
sending n values to every other processor and receiving the
contributions for these n values from all the other processors.
The communication cost of matrix-vector multiplication oper-
ations (given by m) can be written as 2 ∗ n ∗ (p− 1).

c) Scatter-gather vector operations: The cost v of
the nearest-neighbor scatter-gather operation, involving small
amounts of data (≤32 bytes or 4 double-precision scalar
values) is constant, i.e., not dependent on the processor count
or problem size.

d) Preconditioner application: The communication costs
of the PCApply and PCApplyTranspose operations are
designated by cpc, where the subscript refers to the different
preconditioners: casm, cjacobi and cbjacobi.

We compare the communication-related kernels for the
following PETSc solvers and preconditioners:

• Performance of the solvers, without any precondition-
ing techniques: This category includes seven cases for
the seven solvers, namely Conjugate Gradient, GMRES,
FGMRES, TFQMR, BiCG, iBCGS, and BCGS.

• Performance of the solvers with each of the precondi-
tioners: ASM(0), ASM(1), ASM(2), ASM(3), Jacobi and
Block Jacobi, as well as no preconditioning, producing a
total of 49 cases.

C. Communication-based Ranking

To compare the scalability of different linear solvers, we
consider the difference between their communication costs in
a single iteration. With this model, we are mainly targeting
prediction at large numbers of processors p >> 100. Note
that we do not consider the differences in computation costs –
this aspect of performance is captured (in part) by our machine
learning-based model described in Section III-A and [7].

First, we express the communication cost for each solver in
terms of the number of calls to underlying communication-
containing linear algebra kernels. Next, for each pair of
solvers Si and Sj , we compute the difference between these

expressions, as shown later in greater detail. If the result is
positive, then Si has more communication; if the result is 0,
both solvers have the same amount of communication, and
if the result is negative, Sj has more communication. Instead
of focusing on low-level communication primitives (e.g., MPI
functions), we consider each solver’s use of matrix and vector
operations that involve communication. Because these solvers
contain different combinations of the operations in Table I,
in most cases, we can determine whether the result of the
subtraction is positive or not without considering the actual
amount of communication for each operation. In a few cases,
we do have to compare the specific communication costs (MPI
level) of the basic matrix-vector operations. In the remainder
of this section, we apply this approach to each pair of solvers,
first without considering preconditioning and then adding a
preconditioner that involves some communication.

D. Solvers with no preconditioning

First we consider Krylov methods without any precondi-
tioning. Table II shows the number of calls to the functions
performing communication for each Krylov method. After
analyzing the code for obtaining the number of operations
per iteration, we compute the communication cost for each
case in comparison with the others. This step gives the total
cost of communication for that solver. We show the case by
case comparisons of communication costs of operations in the
following subsections.

GMRES and Conjugate Gradient: Conjugate Gradient
(CG) has the following operations that have communication:
two matrix-vector products (2m), two vector norm computa-
tions (2q), and two vector dot products (2q), resulting in a total
communication cost of CCG = 2m+4q. GMRES(k) where k
is the restart parameter, incurs the following communication
costs: 2m, 2q, and one VecMDot_MPI, whose communica-
tion cost is qk(k + 1)/2, resulting in a total communication
cost of CGMRES = 2m + 2q + qk(k + 1)/2. The difference
CGMRES − CCG = 2m + 2q + qk(k + 1)/2 − 2m − 4q =
(k(k+1)/2−4)q > 0 for all k > 2. Hence, the communication
cost of GMRES(k) is higher than that of CG for all k > 2.

Flexible GMRES and Conjugate Gradient: Similarly, we
can compare Flexible GMRES (FGMRES) and CG. FGMRES
has the following operations: two vector norm computations



TABLE II: Number of calls of communication-relevant func-
tions per iteration of several Krylov methods.

Operations Parameter Count
Conjugate Gradient

VecTDot q 2
VecNorm q 2
PCApply cpc 2
MatMult m 2

GMRES
VecMDot MPI q ∗ r(r + 1)/2 1

VecNorm q 2
PCApply cpc 2
MatMult m 2

Flexible GMRES
VecMDot MPI q ∗ r(r + 1)/2 1

VecNorm q 2
PCApply cpc 1
MatMult m 2

BCGS
VecDot q 2

VecNorm q 2
VecDotNorm2 q 1

PCApply cpc 3
MatMult m 3

iBCGS
VecDot q 2

VecNorm q 1
MatMultTranspose m 1

PCApply cpc 5
MatMult m 3

MPIU AllReduce w 2
TFQMR

VecDot q 3
VecNorm q 2
PCApply cpc 4
MatMult m 4

BiCG
VecDot q 2

VecNorm q 2
PCApply cpc 3

PCApplyTranspose cpc 2
MatMult m 2

MatMultTranspose m 1

(2q), two matrix-vector products (2m) and one VecMDot MPI
operation. As shown previously, CCG = 4q+2m. The differ-
ence CFGMRES−CCG = 2m+2q+qk(k+1)/2−2m−4q =
(k(k + 1)/2 − 4)q > 0 for all k > 2. This shows that the
communication cost for FGMRES is more than CG for all
k > 2. The communication cost of FGMRES shown above
and the cost for GMRES (shown in the previous case) are the
same. Thus the comparison of CG with FGMRES method is
the same as that of GMRES. Therefore the communication
cost of FGMRES is more than that for CG and same as for
the GMRES method.

TQFMR and Conjugate Gradient: TFQMR has two
vector norm computations (2q), three vector dot products (3q),
four matrix-vector products (4m). The difference CTFQMR−
CCG = 5q+4m− (4q+2m) = q+2m > 0 for all q,m > 0.
Hence, TFQMR always has more communication than CG.

BiCG and Conjugate Gradient: BiCG has two vector
norm computations (2q), two vector dot products (2q) and
three matrix-vector products (3m). Comparing the commu-
nication costs of BiCG and CG we get: CBiCG − CCG =

4q + 3m − (4q + 2m) = m > 0 for all m > 0. This proves
that BiCG always has higher communication cost than CG.

BCGS and Conjugate Gradient, BiCG: BCGS has the
following operations: two vector norm computations (2q), two
vector dot products (2q), one VecDOTNorm operation q and
three matrix-vector products (3m) totaling up to 5q+3m. The
difference CBCGS−CCG = 5q+3m− (4q+2m) = q+m >
0 for all q,m > 0. This shows that the communication cost for
BCGS is more than that of Conjugate Gradient. Also, because
BiCG’s communication cost is more than that of CG, BCGS
has more communication than BiCG as well.

BCGS and TFQMR: The difference CTFQMR−CBCGS =
5q+4m−(5q+3m) = m > 0 for all m > 0. Hence, TFQMR
always has more communication than BCGS.

BCGS and GMRES: CBCGS −CGMRES = (5q+3m)−
(2m + 2q + qk(k + 1)/2). As described in section III,
m = 2n(p − 1) and q = log p. Substituting these values and
considering the default value of k, the restart parameter in
GMRES, k = 30 and the average number of nonzeros per
row (n) for the problem under consideration is 5. Further
substituting the k and n values in the above equation we get:
CBCGS−CGMRES = −462∗log p+10(p−1) > 0 for all p >
257. Hence, the communication cost is more for BCGS than
GMRES for all p > 257, where p is the processor count.

BCGS and iBCGS: The comparison of BCGS and iBCGS
can be done as follows: CBCGS = 5q + 3m and iBCGS
consists of 3 MatMult (3q), 2 VecDot(2q), 1 VecNorm(q)
and 1 MatMultTranspose(m) operations resulting in a total
of 3q + 4m. The difference CiBCGS −CBCGS = 3q + 4m−
(5q+3m) > 0 for all q,m > 0. On substituting the values of
m and q, we get the below equation: 10 ∗ (p − 1) − log p >
0 for all p > 1. This shows that the cost of iBCGS is more
than BCGS for all p > 1.

iBCGS and GMRES: iBCGS can be compared with GM-
RES as follows: CiBCGS−CGMRES = (3q+4m)−(2m+2q+
qk(k+1)/2). Substituting the values, k = 30, m = 2n(p−1),
n = 5 and q = log p we get: CiBCGS − CGMRES =
log p + 20(p − 1) − 465 log p > 0 for all p > 110. Hence,
iBCGS has more communication than GMRES for p > 110.

BiCG and GMRES: The comparison for BiCG cost with
GMRES can be made as follows: CBiCG−CGMRES = (4q+
3m)−(2q+2m+qk(k+1)/2). Substituting the values k = 30,
m = 2n(p − 1), n = 5 and q = log p we get: log p ∗ k(k +
1)/2− (2 log p+2n(p−1)) = 2n(p−1)−463 log p, which is
negative for p ∈ [1, 258] and positive otherwise. Hence, BiCG
has more communication than GMRES for p > 258.

GMRES and TFQMR: The last case compares GMRES
with TFQMR as follows: CTFQMR−CGMRES = 5q+4m−
(2q + 2m + qk(k + 1)/2). On substituting the values for
m, q and n, we get the following: 20(p − 1) − 462 log p >
0 for all p > 109. Hence, the communication for TFQMR is
more than that for GMRES for cases where p > 109.

Combining the comparison of BCGS with iBCGS and
BCGS with CG, we can derive that iBCGS has more com-
munication than CG. This is because BCGS has a higher
cost of communication than CG and iBCGS have higher



communication cost than BCGS. Therefore we can conclude
that iBCGS has more communication cost than CG.

We compare two solvers at a time based on their communi-
cation cost in each of the above cases. With the comparison,
these solvers can be arranged in a sequence of increasing
communication costs. When all the solvers are placed in the
sequence of increasing communication cost, we can compare
all the solvers with respect to the others.

1) Solvers with Preconditioning: Similarly, we perform the
communication-cost computation for all the solvers with the
preconditioner cases as well. In this work, we analyze three
parallel preconditioners offered by PETSc: the ASM, Jacobi
and Block Jacobi methods. The Jacobi method applies the
matrix diagonal as the preconditioner. Block Jacobi is similar
to the Jacobi method except that Block Jacobi method divides
the matrix into blocks and solves each block with the block
diagonal as the preconditioner. The ASM preconditioner solves
a problem by splitting the problem and solving it on sub-
domains, which are smaller than the actual domain. There can
be an overlap, which refers to the data that is common in two
sub-domains. This is known as the overlap parameter of the
ASM method. We consider four variations of this parameter
with overlap values as 0, 1, 2 and 3. These are referred
to as ASM(0), ASM(1), ASM(2) and ASM(3). The ASM
preconditioner has additional communication in its PCApply
operation which gets added to the overall cost for every solver
preconditioned with this preconditioner. ASM communicates
the overlapping data to one of the neighboring processors. The
total cost of transferring the overlap data, c pc, can be given
as the product of the number of blocks to/from which the data
is transferred and the cost of data communication given by q.
This gives c pc = number of blocks ∗ transfer cost. Thus
the cost of the PCApply operation for ASM(0) is 0, ASM(1) is
q, ASM(2) is 2q and ASM(3) is 3q, where q refers to the cost
variable shown in Table I. Jacobi and Block Jacobi do not have
any additional communication in their PCApply operations, so
the cost variable c pc for these two methods is 0.

2) Preconditioning Methods: Similar to analyzing the com-
munication with no preconditioning, we collect the operations
with communication for all solvers preconditioned with ASM.
The operations are shown in Table IV Conjugate Gradient has
the least communication, and Flexible GMRES has the most
communication.

Unlike ASM, Jacobi and Block Jacobi preconditioners do
not perform communication. Hence, solvers preconditioned
with Jacobi and Block Jacobi have the same communication
cost as solvers with no preconditioning (but may converge in
fewer iterations, which is captured by our ML-based model).

Using the results of the pair-wise comparisons, we rank
solver configurations from 1 to 49 in order of increasing
communication costs as shown in Table III. Solvers with the
same communication cost share the same rank.

IV. EMPIRICAL EVALUATION

We evaluated our approach by using an application for the
simulation of driven cavity flow [17] that uses fully implicit

Newton-Krylov methods to solve the resulting system of non-
linear PDEs. We selected this model problem because it has
properties that are representative of many large-scale nonlinear
PDE-based applications in domains such as computational
aerodynamics [18], astrophysics [19], and fusion [20]. The
most time-consuming portion of the simulation is the solution
of large, sparse linear systems of equations.

The driven cavity model is a combination of lid-driven flow
and buoyancy-driven flow in a two-dimensional rectangular
cavity. The lid moves with a steady and spatially uniform
velocity and sets a principal vortex by viscous forces. The
differentially heated lateral walls of the cavity invoke a buoy-
ant vortex flow, opposing the principal lid-driven vortex. The
nonlinear system can be expressed in the form f(u) = 0,
where f : Rn → Rn. We discretize this system using finite
differences with the usual five-point stencil on a uniform
Cartesian mesh, resulting in four unknowns per mesh point
(two-dimensional velocity, vorticity, and temperature). Further
details are provided in [17]. The results discussed in this
section employ a 1000 × 1000 mesh and the following nonlin-
earity parameters: default lid velocity (0.1), Prandtl number 1,
and two different Grashof numbers: 100 and 1,000 (different
Grashof numbers result in different numerical properties of the
resulting linear system).

Table V shows the Krylov methods labeled “good” by the
random forest classifier along with their ranking from our
analytical communication model for driven cavity simulation
on a 1000 × 1000 grid for Grashof values 100 and 1,000.

For small inputs that don’t require many processors (e.g.,
< 200), the ML model alone can be used to choose a good
solution by randomly selecting a method among the ones clas-
sified as “good”. Larger problems require more parallelism,
so, in addition to applying the ML-generated model to produce
“good” solver recommendations, we also take into account the
solver scalability as expressed by our communication-based
ranking. Specifically, we find that the intersection of the ML-
generated solver list and the analytical solver ranking can be
used to select the top-ranked Krylov method.

We validate the solver selection through empirical mea-
surements obtained on the NERSC Edison supercomputer for
problems of up to 80 million nonzeros solved on up to 12,288
processors. The empirical results in Tables VI, VII, VIII, IX,
X, and XI for different number of MPI tasks are sorted based
on the measured average linear system solution time. Each
row shows the performance of a Krylov method compared
with the solver with the best execution time and the speedup
with respect to the default solver/preconditioner combination
(GMRES/Block Jacobi). The predicted solver configuration (in
bold font) is the highest-ranked (based on communication)
Krylov method that was suggested by the ML model.

As expected, the selection based on communication over-
head ranking is more effective at larger processor counts,
where communication plays a larger role. While several of the
ML-suggested solvers achieve significant speedups over the
default, selecting a method among them based on the commu-
nication overhead does not always improve performance for



TABLE III: Communication-based ranking of solvers for p > 258.

Ranking NoPC ASM(0) ASM(1) ASM(2) ASM(3) Jacobi BJacobi
CG 1 4 5 6 7 1 1

GMRES 8 14 17 19 21 8 8
FGMRES 8 14 16 18 19 8 8

BCGS 26 29 31 34 35 26 26
TFQMR 39 42 47 48 49 39 39

BiCG 22 25 30 31 33 22 22
iBCGS 36 43 44 45 46 36 36
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Fig. 2: Speedup w.r.t. default solver-preconditioner for
12, 288, 6, 144 and 1, 536 MPI processor counts respec-
tively for the driven cavity problem on a 1000 × 1000
grid with Grashof= 100.
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Fig. 3: Speedup w.r.t. default solver-preconditioner for
12, 288, 6, 144 and 1, 536 MPI processor counts respec-
tively for the driven cavity problem on a 1000 × 1000
grid with Grashof= 1000.

TABLE IV: Operations with communication in ASM.

Krylov method Operations
Conjugate Gradient 7q + 2m + 4v

GMRES 5q + 2m + qr(r+1)/2 + 4v
Flexible GMRES 4q + 2m + qr(r+1)/2 + 4v

BCGS 10q + 3m + 4v
TFQMR 9q + 3m + 4v

BiCG 7q + 3m + 4v
iBCGS 9q + 4m + 4v

smaller processor counts. To improve the quality of the ML
predictions, in our future work, we plan to investigate other
ML methods that allow ranking based on convergence instead
of simple two-label classification.

TABLE V: Combining ML-based predictions with the analyt-
ical model ranking for systems arising in the driven cavity
application (1000×1000 grid).

Grashof=100 Grashof=1,000
Rank Krylov method Rank Krylov method

14 FGMRES/ASM(0) 14 FGMRES/ASM(0)
21 GMRES/ASM(3) 36 iBCGS/Block Jacobi
30 BiCG/ASM(1) 43 iBCGS/ASM(0)
31 BiCG/ASM(2) 49 TFQMR/ASM(3)
34 BCGS/ASM(2) -
44 iBCGS/ASM(1) -
47 TFQMR/ASM(1) -
49 TFQMR/ASM(3) -
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Fig. 4: Ratio w.r.t. average time/solve for 12, 288, 6, 144
and 1, 536 MPI processor counts respectively sorted by
average time per solve for the driven cavity problem on
a 1000× 1000 grid with Grashof= 100.
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Fig. 5: Ratio w.r.t. average time/solve for 12, 288, 6, 144
and 1, 536 MPI processor counts respectively sorted by
average time per solve for the driven cavity problem on
a 1000× 1000 grid with Grashof= 1, 000.

The information represented in the aforementioned tables,
for the driven cavity problem on a 1000 × 1000 grid with
Grashof = 100 and 1, 000 can be graphically represented for
different processor counts in terms of the average time per
solver and the speedup with respect to the default combi-
nation. Figure 2 and 3 show the speedup with respect to
the default solver/preconditioner combination (GMRES/Block
Jacobi) sorted based on their communication ranking. The
communication-based ranking is the most effective at 12, 288
count for the driven cavity problem with Grashof = 100. On
the larger driven cavity problem, with Grashof = 1, 000 this
trend is not necessarily visible. The is because the amount
of computation tends to increase with the complexity of the
problem. Now, if the amount of computation is greater or
almost comparable to the amount of communication, compu-
tation becomes the dominant factor. Hence, we make a solver
suggestion based on the ML approach and the communication-
based approach, because either of models as a standalone, does
not capture both, the computation and communication aspects.

Figures 4 and 5 show the ratio with respect to the average
time per solve for different processor counts (12, 288, 6, 144
and 1, 536). The data is sorted by the average time per solve
for all the solvers that finished the computation in time. Other

solver-preconditioners either failed or were timed out as they
were taking too long.

The problem configuration was chosen to be both feasible
and require a nontrivial amount of time on larger processor
counts; the initial configuration was not changed in any way
during the validation.

V. CONCLUSIONS AND FUTURE WORK

We describe a new method for modeling the performance
of parallel preconditioned Krylov methods that combines a
machine learning model of convergence with an analytical
parallel scaling model based on high-level communication esti-
mates. Our new communication-based analytical model gives a
scalability ranking of the solvers. We illustrated this approach
on the Conjugate Gradient, GMRES, FGMRES, TFQMR,
BiCG, iBCGS and BCGS solvers with preconditioners includ-
ing ASM, Jacobi, Block Jacobi, and without preconditioning.
We give a scalability ranking to all the solvers based on the
amount of communication involved per KSP linear iteration.
We evaluated our approach on a numerical simulation of driven
fluid flow in a cavity, resulting in speedups of up to 7.4 over
the default solver configuration on 12,288 processors.



TABLE VI: Solver prediction for the driven cavity problem
on a 1000 × 1000 grid with Grashof = 100 for 1, 536 MPI
tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

1,536 MPI tasks:
35 BCGS/ASM(3) 0.70 1.00 2.90 3
34 BCGS/ASM(2) 0.73 1.05 2.77 3
29 BCGS/ASM(0) 0.73 1.05 2.77 3
44 iBCGS/ASM(1) 0.73 1.05 2.77 3
42 TFQMR/ASM(0) 0.77 1.10 2.65 3
46 iBCGS/ASM(3) 0.77 1.10 2.65 3
45 iBCGS/ASM(2) 0.80 1.14 2.54 3
36 iBCGS/Block Jacobi 0.87 1.24 2.35 3
26 BCGS/Block Jacobi 0.87 1.24 2.35 3
47 TFQMR/ASM(1) 0.90 1.29 2.26 3
43 iBCGS/ASM(0) 0.90 1.29 2.26 3
26 BCGS/Jacobi 0.93 1.33 2.18 3
39 TFQMR/Block Jacobi 1.03 1.48 1.97 3
49 TFQMR/ASM(3) 1.15 1.64 1.77 4
48 TFQMR/ASM(2) 1.33 1.90 1.53 3
31 BCGS/ASM(1) 1.87 2.67 1.09 3
8 GMRES/Block Jacobi 2.03 2.90 1.00 2
14 GMRES/ASM(0) 2.03 2.90 1.00 2
21 GMRES/ASM(3) 2.03 2.90 1.00 3
8 FGMRES/Block Jacobi 2.07 2.95 0.98 2
16 FGMRES/ASM(1) 2.07 2.95 0.98 3
17 GMRES/ASM(1) 2.30 3.29 0.88 2
19 FGMRES/ASM(3) 2.40 3.43 0.85 3
18 FGMRES/ASM(2) 3.13 4.48 0.65 3
19 GMRES/ASM(2) 3.17 4.52 0.64 3
14 FGMRES/ASM(0) 3.20 4.57 0.64 2

TABLE VII: Solver prediction for the driven cavity problem
on a 1000 × 1000 grid with Grashof = 100 for 6, 144 MPI
tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

6,144 MPI tasks:
19 FGMRES/ASM(3) 0.33 1.00 3.90 2
39 TFQMR/Block Jacobi 0.55 1.65 2.36 4
35 BCGS/ASM(3) 0.60 1.80 2.17 3
26 BCGS/Block Jacobi 0.73 2.20 1.77 3
31 BCGS/ASM(1) 0.83 2.50 1.56 3
42 TFQMR/ASM(0) 0.93 2.78 1.41 4
48 TFQMR/ASM(2) 0.97 2.90 1.34 3
47 TFQMR/ASM(1) 1.00 3.00 1.30 3
26 BCGS/Jacobi 1.00 3.00 1.30 3
34 BCGS/ASM(2) 1.07 3.20 1.22 3
8 GMRES/Block Jacobi 1.30 3.90 1.00 2
29 BCGS/ASM(0) 1.40 4.20 0.93 3
8 FGMRES/Block Jacobi 1.47 4.40 0.89 2
49 TFQMR/ASM(3) 1.50 4.50 0.87 3
14 GMRES/ASM(0) 1.57 4.70 0.83 2
16 FGMRES/ASM(1) 1.63 4.90 0.80 2
21 GMRES/ASM(3) 1.73 5.20 0.75 3
18 FGMRES/ASM(2) 1.90 5.70 0.68 3
17 GMRES/ASM(1) 1.93 5.80 0.67 2
19 GMRES/ASM(2) 2.43 7.30 0.53 3
14 FGMRES/ASM(0) 2.47 7.40 0.53 2

Future work will include more solvers and preconditioners,
including multigrid approaches. While the machine learning
model generation is largely automated, the analytical ranking
still involves manual effort; hence we plan to automate the

TABLE VIII: Solver prediction for the driven cavity problem
on a 1000× 1000 grid with Grashof = 100 for 12, 288 MPI
tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

12,288 MPI tasks:
14 FGMRES/ASM(0) 0.33 1.00 7.40 2
19 GMRES/ASM(2) 0.33 1.00 7.40 3
14 GMRES/ASM(0) 0.43 1.30 5.69 2
44 iBCGS/ASM(1) 0.60 1.80 4.11 3
45 iBCGS/ASM(2) 0.70 2.10 3.52 3
46 iBCGS/ASM(3) 0.73 2.20 3.36 3
36 iBCGS/Block Jacobi 0.87 2.60 2.85 2
43 iBCGS/ASM(0) 0.90 2.70 2.74 3
29 BCGS/ASM(0) 0.93 2.80 2.64 2
39 TFQMR/Block Jacobi 0.93 2.80 2.64 3
35 BCGS/ASM(3) 0.97 2.90 2.55 3
26 BCGS/Block Jacobi 1.00 3.00 2.47 2
42 TFQMR/ASM(0) 1.13 3.40 2.18 3
34 BCGS/ASM(2) 1.17 3.50 2.11 3
48 TFQMR/ASM(2) 1.23 3.70 2.00 3
31 BCGS/ASM(1) 1.40 4.20 1.76 3
8 FGMRES/Block Jacobi 1.43 4.30 1.72 2

18 FGMRES/ASM(2) 2.00 6.00 1.23 2
26 BCGS/Jacobi 2.10 6.30 1.17 3
17 GMRES/ASM(1) 2.13 6.40 1.16 2
16 FGMRES/ASM(1) 2.30 6.90 1.07 2
21 GMRES/ASM(3) 2.43 7.30 1.01 3
8 GMRES/Block Jacobi 2.47 7.40 1.00 2

19 FGMRES/ASM(3) 2.90 8.70 0.85 2
47 TFQMR/ASM(1) 3.60 10.80 0.69 1

solver ranking given specific input problem features.
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