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Abstract—Producing high-performance implementations
from simple, portable computation specifications is a
challenge that compilers have tried to address for several
decades. More recently, a relatively stable architectural
landscape has evolved into a set of increasingly diverging
and rapidly changing CPU and accelerator designs, with
the main common factor being dramatic increases in the
levels of parallelism available. The growth of architectural
heterogeneity and parallelism, combined with the very slow
development cycles of traditional compilers, has motivated
the development of autotuning tools that can quickly respond
to changes in architectures and programming models, and
enable very specialized optimizations that are not possible
or likely to be provided by mainstream compilers. In
this paper we describe the new OpenCL code generator
and autotuner OrCL and the introduction of detailed
performance measurement into the autotuning process. OrCL
is implemented within the Orio autotuning framework, which
enables the rapid development of experimental languages
and code optimization strategies aimed at achieving good
performance on new platforms without rewriting or hand-
optimizing critical kernels. The combination of the new
OpenCL autotuning and TAU measurement capabilities
enables users to consistently evaluate autotuning effectiveness
across a range of architectures, including several NVIDIA
and AMD accelerators and Intel Xeon Phi processors, and to
compare the OpenCL and CUDA code generation capabilities.
We present results of autotuning several numerical kernels
that typically dominate the execution time of iterative sparse
linear system solution and key computations from a 3-D
parallel simulation of solid fuel ignition.
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I. INTRODUCTION

To overcome the challenges posed by the limits of Den-
nard scaling, hardware has evolved toward increased levels
of parallelism and heterogeneity, whereas prevalent pro-
gramming models, languages, and the design of compilers
for these languages still reflect a mostly uniform view of
architectures (few homogeneous cores with a hardware-
managed cache hierarchy). Given legacy languages that were
not designed to express massive task and data parallelism,
traditional compilers understandably lag or fail to provide
portable high performance for many existing applications.

Developers wishing to exploit different hardware re-
sources (e.g., both multicore CPUs and accelerators) have
to choose between manually implementing different versions

of (portions of) their applications for different platforms or
underutilizing the hardware while waiting for compilers and
libraries to eventually provide an optimized solution. More-
over, manual architecture specialization is costly in terms of
human effort and decreases readability and reliability.

Annotation-based approaches such as OpenMP [14] and
OpenACC [1] attempt to compensate for some of the de-
ficiencies in existing programming languages, by enabling
developers to explicitly designate parallelizable portions
of code, but because their scope is limited, the resulting
performance is also limited. Frequently annotation-based
approaches (which aim to reduce the changes required
to the original code) require a significant restructuring of
the implementation in order to achieve better performance.
Similar to manual tuning, such changes can reduce code
readability, maintainability, and performance portability to a
different architecture.

To address the disparity between the features architec-
tures are providing and what compilers and other tools
can effectively exploit, we have been developing the Orio
framework [7], which enables rapid implementation of code
generators for multiple architectural targets through source-
to-source transformations and empirical performance opti-
mization (prior to this work, supported targets included C,
Fortran, and CUDA).

This paper presents the following new contributions.
• We have implemented a new OpenCL [16] autotuning

code generator, OrCL, which can be used to produce
parallel code for GPUs, Intel MIC processors, and
multicore CPUs.

• We present a cross-language (OpenCL and CUDA)
and cross-architecture comparison of the results for
autotuning several kernels responsible for significant
portions of the execution time of scientific applications.

The rest of the paper is organized as follows. In Sec-
tion II we briefly discuss relevant prior work. In Section III,
we describe the new OrCL tool implementation and the
integration of fine-grained performance measurements into
the autotuning framework. Section IV presents results from
evaluating OrCL on several architectures through autotuning
linear algebra kernels from Newton-Krylov solvers and the
stencil-based updates and Jacobian computations of a solid
fuel ignition application. Section V presents our conclusions



and outlines future work.

II. BACKGROUND

OrCL was implemented within the Orio open-source,
extensible framework for the definition of domain-specific
languages and generation of optimized code for multiple ar-
chitecture targets, including support for empirical autotuning
of the generated code. The workflow of the Orio framework
is illustrated in Figure 1. In previous work, we demonstrated
that relatively high-level computation specifications can be
embedded in existing C or Fortran codes through annotations
expressed as structured comments [12]. Based on these sim-
ple (typically loop-based) computation specifications and an
additional tuning specification that contains a list of possible
transformations and their parameters, Orio generates opti-
mized versions of the computation in C, Fortran, or CUDA.
The performance of different versions is evaluated empir-
ically; however, because the search space of all possible
transformations and their parameters is generally too large to
test exhaustively, Orio supports a number of search strategies
which dramatically reduce the number of variants that must
be compiled and run. In addition to exhaustive and random
search, several search algorithms are available, including two
variants of Nelder-Mead simplex search (adapted to discrete
problems), a chaos genetic algorithm, and simulated anneal-
ing [2]. The performance of the generated and autotuned
code typically exceeds that of compiled C or Fortran code,
and by exploiting temporal locality for composed operations,
autotuned implementations frequently outperform sequences
of calls to optimized numerical libraries such as vendor
versions of the BLAS and LAPACK [5], [6], [13].
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Figure 1. Orio workflow.

Generation of OpenCL implementations from high-level
specifications is also provided by the The Vienna Com-
puting Library (ViennaCL) [17], which is an open-source
scientific computing library written in C++ that provides
CUDA, OpenCL and OpenMP computing backends. While
ViennaCL relies on an operator-overloading C++ expression

template approach, OrCL employs source-to-source transfor-
mation. Some compilers target accelerator code generation
guided by pragma-based annotations such as OpenACC,
which enable programmers to indicate parallelism within
existing sequential implementations. By contrast, OrCL re-
quires users to rewrite the computations to be tuned (i.e.,
extracting and simplifying a loop-based implementation),
effectively removing unrelated context and control flow in-
formation and thus enabling more aggressive optimization.

III. CROSS-ARCHITECTURE AUTOTUNING WITH
OPENCL

By implementing OpenCL code generation and autotuning
support in Orio, we have enabled the creation of high-
performance implementations for different hardware targets.
While OpenCL provides a standard and portable language, a
single manual implementation will exhibit different perfor-
mance on different architectures for which OpenCL compi-
lation and runtime environments are available. Notably, the
mapping of OpenCL memory spaces onto physical device
memories vary between types of devices, vendors, and gen-
erations of devices within a vendor. OpenCL, by abstracting
the memory hierarchy, makes it somewhat difficult to infer
from the code what data will be placed in a register, in cache,
or in main memory. Hence, exploring different optimizations
through autotuning is essential for obtaining consistent high
performance across heterogeneous architectures.

A. The OpenCL Programming Model

The goal of OpenCL is to enable developers to write
a portable program once and deploy it on any heteroge-
neous system. The OpenCL standard [16] defines a pro-
gramming environment and model for specifying parallel
general-purpose computations for execution on multicore
processors and accelerator devices. Unlike NVIDIA’s CUDA
[11], which is designed for use only with NVIDIA’s GPUs,
OpenCL is not designed with any one vendor, device, or ar-
chitecture in mind. Each vendor wishing to provide OpenCL
support on its devices provides its own implementation of
the OpenCL standard, mapping the OpenCL programming
model onto the particular architecture of the targeted devices.

In the OpenCL programming model, a program is divided
into two components: host and device. The host is respon-
sible for initializing the OpenCL environment, allocating
device memory and copying data between the host and
device, invoking kernel functions which execute on the
device, and synchronizing between kernel invocations. These
are accomplished by means of command queues, into which
copy, kernel invocation, and synchronization commands are
placed.

On the device, kernel executions are partitioned into
workgroups, which in turn are composed of work items. Each
work item in a workgroup executes the same code, and each
workgroup executes independently of any other workgroups



which may be executing on the same device. Work items
have access to private memory, while all the work items in a
workgroup share local memory. The set of all concurrently-
executing workgroups then share read-write global and read-
only constant memory. The host is responsible for specifying
how the overall work to be performed is to be partitioned
by specifying the number of workgroups and the number
of work items per workgroup, which may be limited by
architectural features of the particular device being used.

B. OpenCL Code Generation with Orio

The capabilities of execution units and the sizes and
performance characteristics of the memories vary among
devices, especially between generations of devices and be-
tween devices from different vendors. While OpenCL pro-
vides portability in the sense that kernels originally designed
for one device will run on another, they are not performance-
portable: optimizations that yield good performance on one
device will often not yield good performance on another
device. Given this constraint, automatic performance tuning
can be used to search for variants with good performance.

To accomplish this, we have designed and implemented
the OpenCL code generator OrCL, which takes as input a
kernel specified in a subset of C (also referred to as the
“loop language”) and a set of transformation parameters and
outputs OpenCL device and host code, much as the OrCuda
Orio module described in [10] does for CUDA. OrCuda and
OrCL accept the same kernel specifications and, with some
exceptions, the same transformation specifications, allowing
for code to be generated for either CUDA or OpenCL
as desired from the same high-level specification of the
computation.

When using OrCL, the user identifies loops in his or
her application which are targets for execution on an ac-
celerator device. This loop is then wrapped with a tun-
ing specification (see Figure 2) by placing annotations as
comments before and after the original loop in the code,
so that the original code can still be executed normally.
When OrCL is invoked on the code, variants are generated
(e.g, see Figure 3) and tested based on the specification.
The tuning specification consists of several regions: the
performance_params section, describing the parameter
values which make up the search space for autotuning; the
build section, which describes how generated variants can
be compiled; the input_params section, which describes
properties of the inputs against which generated variants
are tested; the input_vars section, which specifies the
values of the inputs; and the performance_counter
and performance_test_code sections, which describe
how performance measurements of the generated variants
are to be made. The tuning specification is followed by a
transformation statement, which makes use of the parameter
values described in the tuning specification. The parameter
values used by OrCL are described below.

vo id VecAXPY( i n t n , d oub l e a , d ou b l e ∗x , d oub l e ∗y ) {

r e g i s t e r i n t i ;
/∗@ b e g i n P e r f T u n i n g (

d e f pe r fo rmance pa rams {
param WI [ ] = [ 3 2 , 6 4 , 1 2 8 , 2 5 6 ] ;
param WG[ ] = [ 4 , 8 , 1 6 , 3 2 , 6 4 , 1 2 8 ] ;
param CB [ ] = [ True , F a l s e ] ;
param SH [ ] = [ True , F a l s e ] ;
param UI [ ] = r a n g e ( 1 , 4 ) ;
param VH[ ] = [ 0 , 2 , 4 ] ;
param CL [ ] = [ ’ ’ , ’− c l−f a s t−r e l a x e d−math ’ ] ;

}
d e f b u i l d {

a r g build command = ’ gcc −O3 −lOpenCL ’ ;
}
d e f i n p u t p a r a m s {

param N[ ] = [ 1 0 0 0 0 0 , 1 0 0 0 0 0 0 ] ;
}
d e f i n p u t v a r s {

d e c l do ub l e a = random ;
d e c l s t a t i c do ub l e x [N] = random ;
d e c l s t a t i c do ub l e y [N] = 0 ;

}
d e f p e r f o r m a n c e c o u n t e r {

a r g method = ’ b a s i c t i m e r ’ ;
a r g r e p e t i t i o n s = 5 ;

}
d e f p e r f o r m a n c e t e s t c o d e {

a r g s k e l e t o n c o d e f i l e = ’ t a u s k e l e t o n . c ’ ;
}

) @∗ /

i n t n=N;

/∗@ b e g i n Loop ( t r a n s f o r m OpenCL ( workGroups=WG,
workI temsPerGroup =WI , s i z e H i n t =SH , v e c H i n t =VH,
c a c h e B l o c k s =CB, u n r o l l I n n e r =UI , c l F l a g s =CL ,
d e v i c e =1 , p l a t f o r m =0)

f o r ( i =0 ; i<=n−1; i ++)
y [ i ]+= a∗x [ i ] ;

) @∗ /

f o r ( i =0 ; i<=n−1; i ++)
y [ i ]+= a∗x [ i ] ;

/∗@ end @∗ /
/∗@ end @∗ /

}

Figure 2. Annotated vecAXPY kernel for OpenCL generation.

c o n s t c h a r∗ o r c l k e r n e l s o u r c e =” # pragma OPENCL EXTENSION
c l k h r f p 6 4 : e n a b l e\n ”

” k e r n e l a t t r i b u t e ( ( v e c t y p e h i n t ( doub le2 ) ,
w o r k g r o u p s i z e h i n t ( 6 4 , 1 , 1 ) , r e q d w o r k g r o u p s i z e
( 6 4 , 1 , 1 ) ) ) vo id o r c l k e r n e l ( c o n s t i n t n , d oub l e a ,

g l o b a l do ub l e∗ y , g l o b a l do ub l e∗ x ) {\n ”
” c o n s t s i z e t t i d = g e t g l o b a l i d ( 0 ) ;\ n ”
” c o n s t s i z e t g s i z e = g e t g l o b a l s i z e ( 0 ) ;\ n ”
” # pragma u n r o l l 2\n ”
” f o r ( i n t i = t i d ; i<=n−1; i += g s i z e ) {\n ”
” y [ i ]= y [ i ]+ a∗x [ i ] ;\ n ”
” }\n ”
”}\n ”
” ” ;

Figure 3. Example of a generated OpenCL vecAXPY kernel.

1) workGroups: The number of OpenCL work groups
to use. This, multiplied by the number of work items per
work group, gives the overall number of threads that make



up a kernel invocation, the global work size. Where this
number is smaller than the size of the data to be processed,
kernels are generated such that each work item processes
more than one input. The requested number of work groups
are then scheduled across the compute units of the device
by the OpenCL runtime.

2) workItemsPerGroup: The number of work items
(threads) that make up each work group; this controls the
local work size. Each device has a maximum number of
work items per group, which can be queried on the host.
Using the maximum number of work items makes use of all
the computational resources within a workgroup; however,
because the entire work group shares a pool of local memory,
increasing the number of work items decreases the available
memory per work item, which can result in the spilling of
data into global memory, which is much slower than local
memory. The optimum number of work items per group is
thus dependent on the memory usage of the work items.

3) sizeHint: OpenCL provides a pair of function at-
tributes which provide hints to the compiler about the
expected local work size. The work_group_size_hint
attribute allows the compiler to make optimizations that
improve performance when the local work size is equal to
the hinted size but might degrade performance otherwise.
The reqd_work_group_size attribute makes it an error
to invoke the kernel with any work group size other than the
required size, allowing the compiler to make optimizations
that would yield incorrect results for other sizes. OpenCL
compilers, however, are not required to make use of these
hints. The sizeHint transformation parameter specifies
whether these attributes should be applied to generated
kernels.

4) vecHint: OpenCL provides another function attribute
which provides information to the compiler as to how the
function should be autovectorized. The vec_type_hint
attribute informs the compiler of the width of the data
consumed by the kernel, which the compiler can use to
merge or split work items to enable better use of vector
operations. As with the size hints, the compiler is not
required to make use of the hint.

5) cacheBlocks: A parameter specifying whether work
items should copy input data located in global memory
into local memory before operating on it. This can improve
performance, especially when global memory is not cached,
at the expense of increasing the memory consumption of
each work item.

6) unrollInner: A parameter specifying whether to pro-
vide a hint to the compiler as to an unroll factor for the
innermost loop in the kernel. This is done by inserting a
pragma before the loop in the kernel source code. This is
an OpenCL extension which is not necessarily supported by
all implementations.

7) clFlags: Flags provided to the OpenCL
compiler to control optimization. These can be

-cl-mad-enable to enable fused multiply-add instruc-
tions; -cl-no-signed-zeros to ignore the signedness
of zeroes; -cl-unsafe-math-optimizations to
assume all arguments to floating-point arithmetic operators
are valid; -cl-finite-math-only to assume that
all arguments to floating-point arithmetic operators are
finite numbers; and -cl-fast-relaxed-math, which
combines the effects of the previous two flags.

8) device and platform: In a system with more than
one OpenCL platform and/or device available, a parameter
specifying which of these to use. If used as a tuning
parameter, autotuning will be attempted with each of the
platforms and devices specified and the device providing
the highest performance will be used in the generated code.

Some optimizations available in the CUDA code gener-
ator are not yet available in the OpenCL generator. The
streamCount parameter to the CUDA code generator splits
the execution into multiple, overlapping transfers and kernel
executions by using CUDA asynchronous streams. This
could be implemented in OpenCL by using out-of-order
command queues on devices which support that option,
but this has not yet been done in OrCL. The preferL1Size
parameter uses a feature of the CUDA API to choose how to
apportion physical memory on the device into L1 cache and
shared memory. This feature is not exposed in the OpenCL
standard, nor is it exposed in any of the currently existing
extensions. We also do not currently support changes to
data layout, such as converting between structure-of-arrays
and array-of-structures formats, or between row-major and
column-major arrays.

C. Performance Measurement with TAU

For each requested combination of values of the above
parameters, OrCL generates OpenCL device and host code.
In order to measure performance, the generated code is in-
serted into a skeleton which specifies how measurements are
to be made. The skeleton code may be chosen from a library
or the user may specify a custom skeleton. For integration
with the TAU performance measurement system [15], we
use a skeleton code which wraps the generated code in TAU
instrumentation API calls. At this time, NVIDIA does not
provide any mechanism for capturing hardware performance
counters when running OpenCL code. For each variant
tested, performance information is stored into TAUdb, a
database system for storing performance profiles and related
metadata [8]. The performance data is annotated with meta-
data recording properties of the execution environment (such
as the accelerator card used and the sizes of its memories),
input data (such as the sizes of inputs), and optimizations
applied (values chosen for each of the tunable parameters).

IV. EVALUATION

The computations we autotuned were selected among the
functions that dominate the execution time of applications
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based on the solution of nonlinear partial differential algo-
rithms (PDEs) discretized on a regular grid and solved by
using Newton-Krylov iterative methods. For example, the
implementations of most Newton-Krylov nonlinear solvers
consist of sparse matrix-vector products and variations of
the AXPY operation. In Jacobian-free Newton-Krylov ap-
proaches [9], the Jacobian-vector product approximation
required for preconditioning is computed through repeated
evaluation of the application-specific stencil-update function
or user-provided Jacobian (in PETSc [4], for example, these
are the FormFunction and FormJacobian functions –
the latter typically dominates the execution time for most
PDE-based applications). Table I lists the linear algebra
kernels we considered. In addition, we also evaluated auto-
matically generated and tuned version of the FormFunction
and Jacobian computations for a real application simulating
3-D solid fuel ignition (Figure 6).

For the linear algebra computations in Table I, the

operation notation is as follows: A designates a matrix;
x, x1, ..., xn, y, and w are vectors; and α, α1, ..., αn are
scalars.

Table I
KERNEL SPECIFICATIONS.

Kernel Operation
matVec y = Ax

vecAXPY y = αx+ y
vecMAXPY y = y + α1x1 + α2 x2 + · · ·+ αnxn

vecScale w = αw
vecWAXPY w = y + αx

To evaluate OrCL, we ran a series of autotuning exper-
iments on two AMD GPUs, three NVIDIA GPUs, and an
Intel Xeon Phi. Specifications for the test hardware are given
in Table II. To verify that the OpenCL code generator
generates correct code, we generated code from specifica-
tions of BLAS kernels previously used with the OrCUDA
code generator and checked that the generated OpenCL
kernels produce the same output. Generated variants were
instrumented with TAU as described in Section III-C.

Figure 4 shows the execution times of the best variants
for the matrix and vector kernels on vectors of size 106 for
each architecture by an exhaustive search of the parameter
space of the implemented optimizations, as well as the
execution of the best CUDA variant found for the K20c
GPU. Figure 5 shows the performance of the same variants,
normalized by the execution time for the equivalent Vien-
naCL [17] implementations using the default configurations.
For each of the kernels, the CUDA variant produced the
best performance, and the OpenCL kernels for the three
NVIDIA GPUs produced the next-best performance. The
best variants for two AMD GPUs and the Xeon Phi did
not perform as well. We believe that the OpenCL kernels
on NVIDIA produced slightly worse results than CUDA
kernels because of the absence of the stream count and
L1 cache size optimizations in the OpenCL code generator.
Compared with the ViennaCL static compilation results, our
initial autotuning results are up to 2.5 times faster and slower
in only a couple of cases on the Tesla C2075.

We also autotuned the function and Jacobian computa-
tions of a PETSc-based [3], [4] application solving a 3-D
solid fuel ignition (SFI) problem, defined as the following
boundary value problem

−∇2u− λeu = 0 in [0, 1]× [0, 1]× [0, 1]

u = 0 on the boundary

which is discretized by using a finite-difference approxima-
tion with a seven-point (star) stencil in order to obtain a
nonlinear system of equations. The system is then solved
by using PETSc’s Newton-Krylov iterative solvers, which
invoke the application-specific function and Jacobian com-



Table II
PROPERTIES OF OPENCL TARGET PLATFORMS

Accelerator Device Radeon 6970 Radeon 7970 GTX 480 Tesla C2075 Tesla K20C Xeon Phi
OpenCL Version 1.2 1.2 1.1 1.1 1.1 1.2

Max Compute Units 24 32 15 14 13 204
Max Work Items (256,256,256) (256,256,256) (1024,1024,64) (1024,1024,64) (1024,1024,64) (1024,1024,1024)

Max Workgroup Size 256 256 1024 1024 1024 1024
Clock Frequency 880 MHz 1000 MHz 1401 MHz 1147 MHz 705 MHz 2000 MHz

Cache Size None 16 KB 24 KB 224 KB 208 KB 512 KB per core
Global Memory Size 1024 MB 2048 MB 1535 MB 5375 MB 4800 MB 2835 MB
Constant Buffer Size 64 KB 64 KB 64 KB 64 KB 64 KB 128 KB
Local Memory Size 32 KB 32 KB 48 KB 48 KB 48 KB 32 KB

Preferred WG Size Multiple 64 64 32 32 32 16

/∗@ b e g i n Loop ( t r a n s f o r m OpenCL ( workGroups=WG, workI temsPerGroup =WI ,
c l F l a g s =CFLAGS, u n r o l l I n n e r =UIF , s i z e H i n t =SH , v e c H i n t =VH, d e v i c e =1)

f o r ( i =0 ; i<=nrows−1; i ++) {
i f ( i<m∗n || i>=nrows−m∗n || i %(m∗n )<m || i %(m∗n )>=m∗n−m || i%m==0 || i

%m==m−1) {
F [ i ] = X[ i ] ;
} e l s e {

F [ i ] = (2∗X[ i ] − X[ i−1 ] − X[ i +1 ] )∗hyhzdhx
+ (2∗X[ i ] − X[ i−m ] − X[ i +m ] )∗hxhzdhy
+ (2∗X[ i ] − X[ i−m∗n ] − X[ i +m∗n ] )∗hxhydhz
− sc∗exp (X[ i ] ) ;

}
}

) @∗/

/∗@ b e g i n Loop ( t r a n s f o r m OpenCL ( workGroups=WG, workI temsPerGroup =WI ,
c l F l a g s =CFLAGS, u n r o l l I n n e r =UIF , s i z e H i n t =SH , v e c H i n t =VH, d e v i c e =0)

f o r ( i =0 ; i<=nrows−1; i ++) {
i f ( i<m∗n || i>=nrows−m∗n || i %(m∗n )<m || i %(m∗n )>=m∗n−m || i%m==0 || i

%m==m−1) {
d i a [ i ] = 1 . 0 ;

} e l s e {
d i a [ i ] =−hxhydhz ;
d i a [ i + nrows ] =−hxhzdhy ;
d i a [ i +2∗nrows ] =−hyhzdhx ;
d i a [ i +3∗nrows ] = 2 .0∗ ( hyhzdhx+hxhzdhy+hxhydhz ) − sc∗exp ( x [ i ] ) ;
d i a [ i +4∗nrows ] =−hyhzdhx ;
d i a [ i +5∗nrows ] =−hxhzdhy ;
d i a [ i +6∗nrows ] =−hxhydhz ;

}
}

Figure 6. Input source code for the ex14FJ and ex14FF computations.

putations 1, which we designate as EX14FF and EX14FJ,
respectively. The OrCL input for the main loop in these
functions is shown in Figure 6. The performance of the
PETSc iterative solvers also heavily depends on the linear
algebra kernels in Table I (and a few others). Most stencil-
based computations can be similarly optimized by OrCL,
which is not limited to matrix algebra. We autotuned the
function and Jacobian computations with four input sizes:
643, 753, 1003, and 1283 by using a Nelder-Mead-based
algorithm for the search. Unlike the exhaustive search used
in the vector and matrix kernel tuning, single variants are
more expensive to evaluate and the search space for each
input size consists of 7 parameters resulting in a total number
of 5,760 variants of varying individual costs for EX14FF
and EX14FJ. These more complex functions produced much

1These are user-provided implementations that can be of arbitrary size
and complexity and are not typically considered kernels.

more varied autotuning results.
Figure 7 shows the same data for the FormJacobian

kernel. For each device, the highest leftmost point represents
the variant with the worst performance, while the lowest
rightmost point represents the variant with the best perfor-
mance. Each curve shows the distribution of points across
the search space. The best-performing variant was found
on different devices for different kernels and sizes: on the
Xeon Phi for the ex14FF 643, ex14FF 1283 and ex14FJ
1283 kernels; on the Radeon 7970 for the ex14FF 753,
ex14FF 1003 and ex14FJ 1003 kernels; and on the Tesla
K20c for the ex14FJ 643 and ex14FJ 753 kernels. To better
understand the causes of variation in performance across
code variants, we measured hardware performance counter
data where vendor libraries were provided to do so. As
a small example of this, Figure 8 shows the performance
of the FormFunction3D variants of all four sizes on the
Intel Xeon Phi, sorted first by performance, to show the
overall distribution of variants, and then sorted by decreasing
DATA_READ_MISS_OR_WRITE_MISS. The overall trend
follows the same general pattern as performance, indicating
that DATA_READ_MISS_OR_WRITE_MISS is an impor-
tant contributor to the improved performance of the faster
variants. However, it is just one of a complex set of factors
that we hope to analyze in order to model their interactions
and better inform the autotuning search.

V. CONCLUSION

It is a widely held belief that the ability to pro-
gram current- and next-generation application accelerators
portably and optimally is now beyond the expertise of most
humans. However, the ability to write algorithms in a simple
language syntax that can be transformed to multiple target
languages and autotuned for different accelerators is not.
Our research contributes the integration of a code transfor-
mation and autotuning framework with a robust empirical
performance analysis toolkit for the goal of advancing the
state of the art in automated accelerator code generation,
characterization, and optimization. The addition of OpenCL
to Orio’s output languages significantly expands the possible



                                    

1,450

   

1,250

1,300

1,350

1,400

Ge
ne

ra
te

d 
Co

de
 E

xe
cu

tio
n 

Ti
m

e 
(m

ill
is

ec
on

ds
)

FJ 64x64x64Radeon 7970

Xeon Phi GTX 480

Tesla C2075

Tesla K20c

1,210                                     

   

   

1,250

1,300

1,350

1,400

1,450

Ge
ne

ra
te

d 
Co

de
 E

xe
cu

tio
n 

Ti
m

e 
(m

ill
is

ec
on

ds
)

FJ 75x75x75

1,210

Radeon 7970 Xeon Phi

GTX 480

Tesla C2075

Tesla K20c

                                    

1,450

   

1,250

1,300

1,350

1,400

Ge
ne

ra
te

d 
Co

de
 E

xe
cu

tio
n 

Ti
m

e 
(m

ill
is

ec
on

ds
)

Radeon 7970 Xeon Phi

GTX 480

Tesla C2075
Tesla K20c

FJ 100x100x100

1,210                                     

   

1,210

1,250

1,300

1,350

1,400

1,450

Ge
ne

ra
te

d 
Co

de
 E

xe
cu

tio
n 

Ti
m

e 
(m

ill
is

ec
on

ds
)

FJ 128x128x128

Radeon 7970
Xeon Phi

GTX 480

Tesla C2075

Tesla K20c

Figure 7. Performance (execution time in milliseconds) of evaluated variants for FormJacobian3D kernels of four sizes, sorted by execution time to show
the distribution of performance. The X-axis represents different variants executed during the autotuning for each case studied.

accelerator platforms it can target. By incorporating TAU’s
portable, multi-architecture measurement techniques, perfor-
mance data management system, and programmable analysis
tools, empirical characterization and evaluation is available
to inform and improve the autotuning process.

We have described the new OrCL code generator and
autotuner for OpenCL, which obtains very good results on
a variety of accelerator platforms and outperforms static
approaches by up to a factor of 2.5. We plan to continue
expanding Orio’s code generation capabilities, for example,
by adding generation for OpenACC directives to our current
CPU backends (C and Fortran) and providing this as one of
the non-CPU autotuning targets. Because Orio also enables
the definition of simple domain-specific input languages,
we plan to explore additional optimizations that can be
performed at a higher semantic level and would not be
possible for lower level-inputs (e.g., C). For example, if
the domain is stencil-based grid computations, Orio can
exploit the known sparsity structure of the sparse matrix
used in the solution of nonlinear PDEs discretized on a

regular grid to produce optimized matrix and vector kernels
that have regular memory access patterns without indirection
and are thus much more amenable to optimizations than
general-purpose sparse matrix representations (e.g., those
using compressed sparse row data structures).

There are several other directions our work is poised
to pursue. The range of supported OpenCL code trans-
formations will be expanded as we gain more experience
with the language. There are opportunities to expand the
scope of accelerator architecture and compiler parameters
for autotuning. We will tackle larger autotuning challenges,
such as generating autotuned versions for the complete
BLAS, or applying it to more complex computations. This
will also allow more rigorous baseline comparisons with
existing optimized products. Last, we will add more so-
phisticated data mining capabilities to the environment for
factor analysis, feature extraction, and correlation computa-
tions. Additionally, we will investigate machine learning to
capture knowledge about optimization strategies and their
relationships to code and architectural properties.
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