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Abstract—Sparse eigenvalue problems arise in many areas of
scientific computing. A variety of high-performance numerical
software packages including many different eigensolvers are
available to solve such problems. The two main challenges are
finding the routines that can correctly solve the problem and
implementing the desired solution accurately and efficiently using
the appropriate software package. In this paper, we describe an
approach that addresses these issues by intelligently identifying
the sparse eigensolver that is likely to perform the best for given
input characteristics and by generating a code template that uses
that solver. The results are delivered to users through Lighthouse,
a novel interface and search platform for users seeking high-
performance solutions to linear algebra problems. This paper
describes the development of the approach with a focus on the
analysis of sparse eigensolvers in SLEPc and their integration
into Lighthouse.
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I. INTRODUCTION

Sparse eigenvalue problems are pervasive in scientific com-
puting, engineering, and optimization-based machine learning
methods. Such problems appear in various fields ranging from
subatomic particle theories in quantum physics [1] to structural
engineering [2]. In recent years, they are also increasingly used
in search engines [3] and social networks [4]. Scientists and
engineers typically use high-performance libraries that were
developed over time by teams of numerical linear algebra ex-
perts. However, solving sparse eigenvalue problems accurately
and efficiently with these packages normally takes significant
effort and requires knowledge in applied mathematics, com-
putational methods, and the problem domain.

One of the common challenges faced by the developers
is the lack of knowledge of different iterative methods for
solving eigenvalue problems. Some methods or algorithms may
converge much faster than others for the particular problem at
hand. Hence, an inappropriate solver selection or configuration
may lead to an unwanted result such as a high residual or
no convergence. Another challenge lies in selecting a suitable
library and identifying the most appropriate routines for a given
problem. These processes generally depend on the resources
at one’s disposal ranging from hardware criteria, such as
the number of processors available, to personal convenience,
such as the preferred programming language. Optimizing the
performance of an implementation is a big challenge for many
developers because it requires a solid understanding of the
selected software package framework, numerical computation,
compilers, and computer architecture.

Lighthouse [5] is an innovative framework that connects
linear algebra software resources with code implementation
and optimization. Lighthouse is an ongoing project with ever-
increasing content and functionality. This paper focuses on
the addition of eigensolvers from the Scalable Library for
Eigenvalue Problem Computations (SLEPc) [6] to Lighthouse
and is organized as follows. Section II provides the related
work. Section III discusses our approach for developing the
Lighthouse taxonomy. Section IV presents the details of the
integration of SLEPc with Lighthouse to identify and deliver
the best sparse eigensolvers to users. Section V summarizes
the conclusions and outlines future work.

II. RELATED WORK

A number of existing taxonomies attempt to address the
problem of finding and using high-performance numerical
software. Perhaps the oldest one (starting in 1985) is the Netlib
Mathematical Software Repository [7], which contains freely
available software, documents, and databases pertaining to
numerical computing including eigensolvers. The information
is organized as lists of packages or routines, with or with-
out accompanying documentation. The newer Linear Algebra
Software Survey [8] contains over sixty items categorized as
support routines, dense direct solvers, sparse direct solvers,
preconditioners, sparse iterative solvers, and sparse eigenvalue
solvers together with a checklist specifying problem types for
each entry. NIST’s Guide to Available Mathematical Software
(GAMS) [9] includes a wider range of basic linear algebra
software along with software for a variety of other numerical
applications. While the Linear Algebra Software Survey is a
linear list without advanced search capabilities, GAMS allows
search by problem solved, package name, module name, or
text in the brief module abstract. An earlier Java-based client
called HotGAMS [10] allowed an interactive search of the
GAMS repository but is no longer available. Both the Survey
and GAMS index into Netlib for software downloads. It is also
possible to browse and search Netlib directly.

With existing taxonomies or general-purpose search en-
gines, the user must manually explore the many available
packages and learn enough about each of them to be able
to make a good choice. For full understanding, the user may
also need to read significant portions of the documentation
for each candidate software package. After selecting a library
that can solve his or her target problem, the user typically
spends considerable time learning how to use it correctly and
efficiently before they can encode their solution.



Even after rigorous comparative analysis of the methods
and careful selection of software packages, the selected algo-
rithm may or may not work for the problem of interest de-
pending on various factors. When using high-quality software,
an unsatisfactory solution may still result for certain inputs.
For example, the number of converged eigenvalues may be
different from expected or the residual may be greater than
expected. Even if no mistakes are made in any of the steps
explained above, the chosen solver may fail to produce the
desired solution for the given problem, and it may be necessary
to repeat some or all of the development steps.

III. PROPOSED APPROACH

Lighthouse is an open source web-based expert system that
matches a user’s functional and performance needs with avail-
able high-performance linear algebra software. The Lighthouse
taxonomy provides a classification of existing linear algebra
libraries that currently includes Linear Algebra PACKage (LA-
PACK) [11], Portable, Extensible Toolkit for Scientific Com-
putation (PETSc) [12], and SLEPc. Built with the Django [13]
web application framework, the Lighthouse user interface (UI)
is a user-centered design, offering efficient search capabilities
that accommodate users with various levels of experience in
numerical linear algebra. Figure 1 illustrates the Lighthouse
Guided Search for LAPACK linear solver routines. The Guided
Search is designed to lead users through increasingly refined
subroutine searches until the desired result is attained. The
Advanced Search, on the other hand, is recommended for users
who are familiar with the library. All users can benefit from
the Keyword Search, which allows for subroutine search via
an input keyword or phrase.

In addition to the search feature, Lighthouse creates code
templates in FORTRAN 90 and C containing working pro-
grams that declare and initialize required data structures and
call selected subroutines. Users can download and modify the
templates to meet their particular project needs. Moreover,
Lighthouse provides the ability to automatically generate and
tune high-performance implementations of custom linear al-
gebra computations by interfacing with the Build to Order
(BTO) [14] compiler. BTO produces highly tuned C implemen-
tations based on high-level MATLAB-like input specification
of the computation.

The Lighthouse taxonomy is continuously expanding, and
SLEPc is one of our current development focuses. SLEPc
is based on the PETSc package [?], [15], which provides a
comprehensive set of data structures and algorithms for the
parallel solution of problems modeled with nonlinear partial
differential equations.

To determine what eigensolver is most appropriate for a
given problem, we have analyzed SLEPc solvers by applying
machine learning techniques to a large set of different problems
to find those that are most likely to yield the best performance
for a given set of matrix features. The next section describes
the process of integrating SLEPc with Lighthouse.

IV. SLEPC - LIGHTHOUSE INTEGRATION

We experimented with different eigenvalue problems and
available SLEPc solvers to determine the performance of
each solver. First we considered known functional properties

Figure 1. Lighthouse Guided Search for LAPACK linear solver routines.

TABLE I. INPUT FEATURE SET.

Property tested Range of input parameters tested
Matrix order 112 x 112 to 262,111 x 262,111

Matrix type Real, Complex

Matrix data Binary, Double

Matrix characteristics Hermitian, Non-Hermitian

Number of eigenvalues 1, 2, 5, 10

Portion of spectrum Largest magnitude, Smallest magnitude, Largest
real, Smallest real, Largest imaginary, Smallest
imaginary

Tolerance 1.00E-04, 1.00E-08, 1.00E-10

Number of processors 1, 2, 4, 8, 12, 24, 48, 96, 192

TABLE II. SLEPC SOLVERS TESTED.

SLEPc solvers power, subspace, arnoldi, lanczos, krylovschur, generalized
davidson, jacobi davidson

of algorithms to to narrow down to the solvers that work
best for each problem examined (e.g., some methods are
only suitable for solving symmetric problems). We then used
machine learning techniques to intelligently predict the solvers
that will work best for a given set of input features. The
experimental results served as training data to the prediction
algorithm, which identifies the sparse eigensolvers included in
Lighthouse for a given problem.

A. Experiments

To run the experiments, we first obtained matrices from
Matrix Market [16] and the Florida Sparse Matrix Collection
[17] that cover the problem domains of interest.

Table I shows the range of input parameters tested. For each
case of these input parameters, we obtained the performance
and result accuracy for different SLEPc solvers. Table II shows
the SLEPc solvers used for these experiments. The resultant
data set consists of more than 29,000 data points.

B. Training and Prediction

To begin, we experimentally determined the solvers that
work best for every case tested, after which, we used machine
learning techniques to make intelligent decisions about the best
known solvers for any untested case. The predicted results



were then verified using standard validation techniques. The
following subsections describe these steps in detail.

1) Finding the best solver - Training data setup: The
analysis to identify the best suited eigensolvers can be split
into two steps: elimination and selection. Output characteristics
of interest for these two steps are the number and selection of
converged eigenpairs, time taken, and residual.

In the elimination step, we first remove the solvers with
resultant characteristics completely outside the expected value
range. For this, we count the number of eigenvalues that
converged with a residual less than the given residual tolerance.
If the count obtained is less than the desired number of
eigenvalues, the solver is removed from the list.

For the selection step, all of the eigensolvers remaining
after the described culling are reasonable choices, but the
fastest of them is selected as the best fit for the given problem
specifications. Additionally, to avoid losing other efficient
solvers, we select from the remaining list those that take at
most 10% more time than the best fit eigensolver.

For every input permutation tested, we follow the method
detailed above to obtain the resultant table (a subset of the
original dataset) which identifies the best solvers for each
unique input set.

Non-convergence case: After experimenting with very
large upper limits, we set the maximum iteration limit to 1,000
iterations for all eigensolvers except the power method. The
time to run an iteration of the power method is much less than
the time for other solvers, hence we set the upper limit for
it to 5,000. The experiments established that most solutions
converge significantly fewer itrations. If the solution does not
converge within the specified limits, it is labelled as non-
convergent.

In such non-convergent cases, there is still a possibility that
a solver converges but not to the exact expected number of
eigenvalues or residual tolerance. Solution methods that show
some signs of convergence, even though not to the desired
values, are retained for the training data. Hence, such input
cases have the information of the partially converged solvers
along with non-convergent label.

2) Intelligent solver selection - Prediction: The previous
step produces a reduced set of data which gives the best solvers
for each tested case. We apply machine learning techniques to
make intelligent predictions for other problems using the data
as a training set.

Decision tree induction [18] is a popular prediction model
that uses observations with known results, referred to as the
training data set, to form a model for predicting the results
for any data. It uses the features or attributes of the data
set, the matrix properties and expected output parameters to
form a pattern that can best fit the training data. The final
prediction model is a classification tree, where every inner
node is an attribute to be selected, every branch from the node
is a selection made, and the leaf nodes lead to the predicted
result. For our case, we want the data to be classified into the
eigensolvers available in SLEPc.

From the previous step, for every input case tested, we
have one or more best solvers. To accommodate multiple solver

Figure 2. Part of the generated classification tree using ORANGE.

recommendations, apart from the input parameters, we added a
performance index feature to the dataset. For every input case,
the performance index is given an integer value of one for the
fastest solver and is incremented by one for remaining solvers
with increasing time taken. Using the expanded feature set as
training data, the obtained decision tree learns the order of the
best performing eigenvalue solvers as well. The generated tree
can be used to suggest multiple eigensolver classes by simply
ignoring the performance index and taking into account all
other feature criteria in the query.

We employed two applications to obtain the classification
tree from the training data. We first used MATLAB’s Classifi-
cationTree.fit functionality [19]. We also used the application
Orange [20], which is an open-source data mining tool for
different learning operations, such as classification, evaluation
and prediction. In particular, Orange has good visualization
options that make viewing large trees much easier than with
other applications like MATLAB or Weka [21].

Using these applications we obtained a classifier in the
form of a binary tree, with every node representing a fea-
ture, such as matrix size, matrix type and desired eigenvalue
spectrum. A portion of the classification tree generated from
Orange is shown in Figure 2. The decision to follow the left
branch or the right branch of a node is made depending on
the value of the feature at that node. The leaf node gives
the suggested eigensolver for the path followed. The tree also
has the information about the matrix properties and output
characteristics which do not converge to a solution for any of
the eigensolvers available in SLEPc. Such leaf nodes have the
value set to “No Convergence”.

3) Validation: We employed several methods to validate
the results. For the decision tree in MATLAB, cross-validation
results were checked using the MATLAB cvLoss() func-
tion. The decision tree cross-validation classification error
(loss) for the training data set was obtained to be 0.1450 which
implies a 14.5 percent error in prediction. For the decision tree
created using Orange, 10-fold cross-validation was applied,
and we obtained classification accuracy of 0.8639. Close to
the results from MATLAB, the latter result implies a 13.61
percent error in prediction.

The validation results obtained using the above methods
take into account the order of the best performing solvers.



Figure 3. Scatter plot analyzing eigensolver vs portion of spectrum.

Lighthouse implementation suggests all the favorable solvers
irrespective of the order. Hence, to get more accurate validation
results with respect to Lighthouse, we employed a different
technique. We used the generated tree to predict the results
for each input case tested, varying the performance index.
As a result, we formed a favorable solver subset for every
input case, each predicted solver in the subset corresponds
to a different performance index. If the predicted favorable
solver subset is same as the expected subset (in training data),
irrespective of the performance index, we considered it to be
accurately predicted. This test gives an error of 7.99%, which
implies 92.01% input cases were accurately predicted.

4) Result analysis: In this section we describe some result
analysis with respect to the experiments conducted. Figure 3
shows a scatter plot of the eigensolver versus a portion of
spectrum. Note that jacobi davidson (jd) is not a preferred
solver for any smallest imaginary case and that generalized
davidson (gd) is less likely to be selected as the most efficient
solver for the largest portion of the spectrum. Similarly,
plotting eigensolvers versus binary and non-binary matrices
(where “binary” refers to a matrix with all non-zero values
as one), we found that lanczos solver, which predominantly
worked for Hermitian non-binary matrices, does not work at
all for Hermitian binary matrices. Plotting these parameters in
graph form helps us infer some feature characteristics in two
dimensions, whereas the decision tree captures all such results
in higher dimensions (for every feature tested).

C. User Interfaces

Once the collection of the data required for integrating
SLEPc with Lighthouse is complete, we constructed a MySQL
database through Django. The database schema is derived from
the information on the decision tree.

We converted the classification tree information into a
MySQL datatable using a depth first search algorithm [22].

Figure 4. Guided search UI in Lighthouse for sparse eigensolver routines

Every path from the root node to the leaf node forms a single
row in the datatable. The columns of the datatable constitute
the attributes from the tree including matrix properties, such
as matrix type and matrix order, as well as the desired output
characteristics, such as the residual tolerance and the number
of eigenvalues. The generated decision tree consists of 395
leaf nodes. Thus, the resulting datatable comprises 395 distinct
rows with unique features. The user selects the desired features
via the Lighthouse-SLEPc interface and the respective best
solvers are fetched from the database.

Like the LAPACK UI in Lighthouse, the SLEPc UI also
provides Guided Search. The questions correspond to the
features in the generated decision tree. Each question is a fun-
damental query to the database that directs the search toward
the most appropriate result. Upon the user’s answering all the
questions, Lighthouse suggests the best known eigensolvers,
and the user may choose to generate a respective code template
in FORTRAN 90 or C. Figure 4 illustrates the Guided Search
UI in Lighthouse for sparse eigensolver routines using the
SLEPc package. Note that the interface consists of simple
questions that lead the user to the desired SLEPc routines.

The Advanced Search implementation contains questions
similar to Guided Search but it delivers all the SLEPc eigen-
solver routines that are compatible with the user-specified



problem (irrespective of the suggestions from the decision
tree). The Advanced Search feature is for experienced users
who are aware of the routines and would like to make their
own selections. Additionally, Advanced Search also includes
some questions requiring extended eigensolver knowledge.

The Keyword Search is also provided so that users can
directly search for the routine by name and generate the
respective code template.

V. CONCLUSION AND FUTURE WORK

In this paper, we described our methods for easing the most
significant task in solving a sparse eigenvalue problem. Our
approach includes providing customized SLEPc eigenvalue
solutions and generating the respective code through Light-
house. The intelligent solver suggestions obtained through
the machine learning techniques will offer more accurate and
efficient solutions and relieve users from having to research
the documents of every eigensolver routine available. The
automatically generated code will help save time and effort
in implementation, thereby improving the productivity of de-
velopers and scientists. It will also overcome the barriers
caused by unfamiliarity of the programming language and
implementation specifics, such as parallel programming.

In future work, we will continue to integrate more SLEPc
functionality (e.g., singular value decompositions) into Light-
house and enable all of the described search features. We
believe that our effort will help in reaching out to a wider user
base by providing easy access to computationally challenging
sparse eigenvalue solutions, thereby further accelerating scien-
tific development and discoveries.
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