
GraphFlow: Workflow-based Big Graph Processing

Sara Riazi, Boyana Norris
Department of Information and Computer Science

University of Oregon
Eugene,OR 97403

sara@cs.uoregon.edu, norris@cs.uoregon.edu

Abstract—We introduce GraphFlow, a big graph framework
that is able to encode complex data science experiments as a
set of high-level workflows. GraphFlow combines the Spark big
data processing platform and the Galaxy workflow manage-
ment system to offer a set of components for graph processing
using a novel interaction model for creating and using complex
workflows. GraphFlow contributes an easy-to-use interface and
scalable algorithms for big graph analytics. We demonstrate
GraphFlow use in large social network analysis with several
case studies.

Keywords-graph analysis, workflow, big data

I. INTRODUCTION

In recent years, analysis of large-scale networks has
become an integral research component in a wide variety
disciplines including bioinformatics [1], social sciences [2],
and epidemiology [3]. Networks are graph-based models
of complex systems of interacting entities. The entities are
represented as vertices in the network and their pairwise
interactions as edges. Analyzing the properties of networks
helps us understand the characteristics of the underlying
systems. For example, vertices with high centrality map to
lethal proteins in protein-protein interaction networks [4],
and groups of closely connected vertices in social networks
map to people with similar interests [5].

Unfortunately, in practice there is a significant gap be-
tween the services provided by the network analysis toolkits
and the actual needs of the domain experts. Most network
analysis packages only provide a set of algorithms that
can be used as a black box. However, with the increasing
diversity of data formats and solution requirements, there
are no high-level reusable solution approaches. Instead, each
data analysis instance can have a different workflow based
on the underlying analysis framework, typically requiring
domain expert involvement at each step. Current network
analysis frameworks do not provide sufficient support for
creating, reusing, and extending complex workflows required
for analyzing large diverse datasets. Moreover, they rarely
provide support for auxiliary, but necessary tasks, such as
creating graphs from raw data, filtering metadata, selecting
heuristics and comparing multiple results.

Processing large datasets presents yet another challenge.
Very few network analysis software tools support parallel
algorithms, and the set of available methods is also small.

Some approaches even implement out of core algorithms [6],
[7] to enable the analysis of large-scale graphs, incurring
significant performance penalty for disk I/O (even when
using SSDs). Even though any tasks, such as finding the cor-
relation coefficients over a set of entities or running multiple
algorithms over the same dataset, are trivially parallel, most
software tools do not allow simultaneous execution of these
tasks, even when there are parallel resources available. Our
approach aims to maximize parallel resource utilization by
exploiting parallelism at a much finer-grained level, within
individual analysis tasks.

The research contributions described in this paper is a new
framework for large-scale graph analysis that combines the
Galaxy workflow engine and interface with a new distributed
Spark-based implementation, including the following.

• A Galaxy-based workflow front end to Spark-based
distributed graph analysis tools.

• High-level abstractions for Spark components and a
well-defined interaction model.

• Examples of reusable GraphFlow workflows.
We illustrate GraphFlow capabilities with realistic large-
scale graph analysis use cases.

II. BACKGROUND

In this section we overview the concepts and software
infrastructure, on which GraphFlow is based, as well as
related work on parallelizing Galaxy workflows.

A. Large-Scale Graph Processing Approaches

One of the most significant advances in distributed data
processing is the MapReduce programming model [8]. In
MapReduce, data is converted to key-value pairs and then
partitioned to nodes. A MapReduce system consists of a
set of workers that are coordinated by a master process.
Computation consists of multiple distributed map and reduce
operations, with intermediate results stored as key-value
pairs stored on local disks.

Many graph frameworks such as Preglix [9], GraphX [10],
and PEGASUS [11] are developed on top of data-parallel
systems to benefit from their optimized parallel processing.
The other major benefits of using data-parallel system to
represent graph data structure and graph operation are graph
mutation and out-of-core computation.



GraphX [10] is a distributed graph processing framework
developed on top of Apache Spark1, which is a fast growing
distributed computing framework. In Spark applications, a
driver ”main” program runs on a master process and coor-
dinates the execution of distributed worker processes. The
most important concept in Spark is the resilient distributed
dataset (RDD) data structure [12], an immutable collection
of objects that is partitioned across different Spark workers
in the network. Because Spark is a data-parallel computation
system, GraphX implements graph operations based on data-
parallel operations available in Spark such as join, map,
and various reductions. GraphX represents graphs using two
RDDs, one for vertices and another for edges.

However, efficient processing of graphs in a distributed
environment requires more than simple MapReduce opera-
tions because vertices are processed in the context of their
neighbors. Hence, GraphX represents vertices and edges
using a triplet construct that stores the value of an edge
and the values of vertices incident to that edge. Therefore,
by grouping triplets on id of the source or destination
vertex, one can access the value of all the neighbors of each
vertex. Moreover, because the triplets are distributed, if the
neighbors of a vertex are located on different machines, then
Spark workers communicate to each other to construct the
group by result.

B. Galaxy Workflow

Galaxy [13] is a public, user-friendly data integration and
workflow management system, mostly used in the biomed-
ical sciences. Recently, it also has been used for social
sciences [14], but the provided tools are based on common
statistical algorithms, and are not intended for big data
processing. Galaxy does not have any abstraction for graph
data. Galaxy enables users to graphically describe workflows
by drawing pipes to connect tools. Then, the system manages
the execution of the workflow by running the tools over input
datasets in a defined order. The Galaxy toolshed supplies
different, mostly bioinformatics tools, for gathering and
processing data, and also allows users to introduce new tools
and include them in the workflows. Galaxy workflows can
be stored, which enables reproducibility. Galaxy runs each
tool as a separate sequential program providing the output
of a tool as the input to the next tool in the workflow.

Galaxy tools are described using XML files that contain
the input, parameters, output of the tools, and execution
specifications.

Many bioinformatics applications are data intensive;
hence, running the Galaxy workflows in the cloud can
increase the amount of available resources and can also
potentially speed up the evaluation of workflows. In a cloud-
based environment, tools in a workflow that do not depend
on each other run in parallel on different machines [15]. In

1https://spark.apache.org/

these platforms Galaxy is offered as service on purchasable
high-performance computational resources.

BioBlend [16] is another approach to parallelizing Galaxy
workflows, which offers a rich API for accessing Galaxy
workflows and jobs on cloud resources. Nevertheless, these
platform and frameworks do not parallelize the execution
of each tool (algorithm) over different machines, so many
data science experiments that are usually expressed as a
pipeline of single tools and scripts would not benefit from
these cloud-based coarse-grained parallelization approaches.

III. GRAPHFLOW

In this section, we introduce GraphFlow, a workflow-
based big graph processing toolkit. The GraphFlow toolkit
is a set of new Galaxy compatible tools that offers the rich
GraphX graph algorithm API through the higher level of
abstraction of Galaxy workflows, which improves usability,
reuse, and reproducibility of graph analysis tasks, while
adding fine-grained parallelism to Galaxy for the first time.

Using GraphFlow we can construct complex data science
experiments as a workflow of Spark-based components. Al-
though throughout this paper we focus on Spark as the data-
processing engine, we can incorporate other data-processing
frameworks in future.

Figure 1 shows the general architecture of GraphFlow.
Each new Galaxy tool submits a Spark application to cluster
systems through the cluster-adapter or runs it on a local
machine. The cluster-adapter we developed provides access
to tools by managing the Spark master node and other clus-
ter dependent configuration. This new architecture enables
GraphFlow to separate the workflow interface from the data
processing. Therefore, Galaxy workflow can be placed on a
local machine, e.g., a laptop, while the data engine resides
on the cluster system.

A. Data Description

The input data provided by Galaxy must be made ac-
cessible to Spark applications and output data generated by
Spark applications must be accessible to Galaxy. The new
cluster-adapter is responsible for this data migration.

In addition, Galaxy expects the input data to be stored
as single local file in a conventional file system (not a
distributed file system such as HDFS). By contrast, Spark
partitions data into multiple files, which may also be dis-
tributed over many separate machines (virtual or real).

To address this inconsistency in a MapReduce context,
Pireddu et al. [17] introduce a new functional and extensible
integration layer, which enables the users of Galaxy to
combine Hadoop-based tools with conventional sequential
tools in their workflows.

Their adaptation layer combines the HDFS address of
input data files as a pathset and passes the constructed
pathset to a Hadoop-based tool, which outputs another



Figure 1. The architecture of GraphFlow. The Spark-based tools in Galaxy interact with Spark nodes on the cluster system using a cluster-adapter.

pathset as results. The output pathset can be the input of
another Hadoop-based tool.

We build on this indirect referencing and introduce the
Metafile as the input and output format of GraphFlow com-
ponents. A Metafile is an XML description of the objects, the
address type, and object address. By using the information
about the address type, the cluster-adaptor can determine
whether the object is stored locally, on HDFS, or on a
network file system, and can then post the application to
the requested cluster system or local machines if the data is
available to it. Moreover, to avoid data migration, the address
type is used for allocating space for the output data at the
same file server as the input data.

Metafiles also include the schema of the data, which
helps users attain general understanding about the underlying
values because only Metafiles are accessible to users through
the Galaxy experiment history.

B. Interaction Model

The ultimate goal of GraphFlow is to provide a workflow-
based environment that is capable of encoding complex
graph analytic experiments. Each GraphFlow component is
a Spark application that manipulates a distributed collection
of objects stored as dataframes. By using this representation,
we define each GraphFlow component as either: (a) a
complex map function that transforms a dataframe or a graph
object to another dataframe, graph or a combination of these;
or (b) a reduce function of a dataframe or a graph into a
single data file, a set of aggregated values or charts.

Loading and storing typed collection objects such as
RDDs reduces the generalization of the each component
because RDDs have to be manipulated differently based on
the type of the objects they are encapsulating. For better
generality, each GraphFlow component expects the input
to be in a named column format, such as a CSV file.
Each GraphFlow component loads the input CSV file into
a dataframe and maps it to another dataframe. Finally, the
component stores the dataframe as another CSV file. The
CSV files are multi-part files, so GraphFlow components
expect a Metafile as input that contains the schema of these
CSV files and their addresses, and outputs another Metafile.

The schema of an output Metafile may be different from
the schema of the input Metafile. We use the Spark-CSV
library2 for I/O of dataframes.

C. GraphFlow Components

The GraphFlow components are grouped into general
input/output tools, graph analytic tools, relational tools, and
plotting tools. All GraphFlow components return a log file
in addition to their expected output. This log output is
a single text file understandable by Galaxy. The log files
usually includes a small sample of output dataframes and
the execution log of the tool (useful for debugging). For
simplicity, we do not explicitly mention the log output in
the description of each tool. Next, we describe GraphFlow
components in more detail.

GraphFlow’s I/O tools include components used to con-
vert single-file data into dataframes and graph objects, and
also to convert them back to single-file data. Since the
aim of GraphFlow is to process big graph data, we expect
GraphFlow’s users to upload their big data files directly to
the cloud storage (e.g., Amazon S3 if using Amazon AWS)
instead of uploading through the Galaxy Web interface, and
use their corresponding Metafile of their data as input to
the GraphFlow’s components. Therefore, we provide a basic
MetaLoader component, which takes the file information
from users and constructs a Metafile for it. The MetaLoader
component can be used as the initial component of any
workflow. DFDump can be used for converting a distributed
dataframe back to a single file, which is downloadable
through Galaxy interface. GraphFlow has two more similar
components GraphLoader and GraphDump for loading a
distributed graph object from a single file and for dumping
a graph object into a single file, respectively.

GraphFlow provides a collection of graph tools that
include algorithms for generating and processing big graphs:
GraphGen, PageRank, DegreeCount, TriangleCount, Sub-
graph, LargestCC, GraphCluster, ClusterEval, and Graph-
Coarsen. The GraphGen components support generating
random graphs using log-normal degree distribution and
RMAT [18].

2https://github.com/databricks/spark-csv



PageRank is a well-known graph vertex ranking algorithm
introduced by Google for ranking Web pages. GraphFlow’s
PageRank component takes a graph object and outputs a
dataframe with two columns of vertex IDs and rank value,
for which the rank values are computed using the PageRank
algorithm provided by Apache Spark’s GraphX library.

Similar to the PageRank component, the DegreeCount and
TriangleCount components take a graph object and return a
dataframe of vertex IDs and degree counts, and a dataframe
of vertex IDs and triangle counts, respectively.

The subgraph function in GraphX constructs a subgraph
of the original graph. The user must provide either an
edge or a vertex indicator function. The purpose of the
indicator function is to determine whether the given edge
or vertex belongs to the resulting subgraph. In order to
utilize the indicator function, we represent any discrete
function f as a dataframe of x and f(x). For the vertex
indicator, x is a vertex ID, and f is a boolean function. The
Subgraph component in GraphFlow takes a graph object and
a dataframe representing an indicator function, and returns
two graph objects: one for the subgraph corresponding to
the indicator function and the other for the complement of
that.

Another component is LargestCC, which takes a graph
object and outputs the subgraph of its largest connected
components.

GraphFlow also includes a set of graph clustering al-
gorithms such as PIC [19], spectral clustering [20], and
label propagation. We rely on the Spark implementation for
PIC and label propagation, and add our implementation for
spectral clustering. For GraphCluster takes a graph as its
input and returns two outputs. The first output is a graph
object called a cluster graph, in which the attribute of each
vertex is the cluster number of that vertex. The other output
of GraphCluster is a dataframe of vertex IDs and cluster
numbers, which can be transform to an indicator function
using query component as we describe later, so one can
easily create a subgraph of nodes belonging to a particular
cluster.

To measure the quality of a clustering, we created a
GraphFlow ClusterEval component that implements two
clustering metrics, modularity [21] and normalized cut [22].
This tool takes a cluster graph (as described above) and com-
putes the modularity and normalized cut. We can consider
the ClusterEval component as a reduce function that reduces
a distributed graph object to a single value. We implemented
the modularity and normalized cut computations using the
Spark GraphX API.

Finally, we created a GraphCoarsen component that can
be used to simplify a big graph. GraphCoarsen takes a
cluster graph as input and replaces a set of vertices in a
cluster with a super vertex. The output is a graph object
where each super vertex attribute is the number of vertices
that form the supper vertex. The coarsening implementation

Figure 2. The Query tool expects a table name and query on the given
table name. Providing the Query tool with the output schema is optional.

is based on the pseudocode provided in [10].
Relational tools consists of Info, Query, JoinQuery, and

PredefinedQueries components. These relation components
are a very important part of every workflow represented
in GraphFlow because we can use them to transform or
constrain dataframes or to join the output of multiple com-
ponents.

The Info tool collects the schema, the number of available
data points, and some samples of data points from the given
dataframe in order to guide the user in constructing valid
queries.

The Query component runs an SQL query over the given
input dataframe. In order to run a query over a dataframe, it
first registers the input dataframe as a relational table with
the given name, and then executes the query on the relational
table. Figure 2 shows the parameter of page of the Query
tool and an example SQL query. The Query component
also expects the schema of the output dataframe in order to
construct appropriate named columns. The given names are
specifically useful when we want to run other queries on the
output dataframe. To simplify using the relational queries,
we provide a set of common queries in PredefinedQueries.

The JoinQuery component is similar to Query, except it
accepts two dataframes as inputs, so we can run join queries
on both dataframes. Similar to Query, we provide names
for the tables, schema for the results, and the SQL query.
JoinQuery is specifically useful when we want to combine
the information of two dataframes.

Statistics tools: the goal of these components is to collect
statistics from the dataframe. Cumulative density function
(CDF) has been extensively used in practice to study the
data distribution, which is also provided here.



Figure 3. The workflow of hierarchical clustering using Subgraph,
GraphCluster, and Query.

Plotting tools: includes different plotting components
such as ScatterPlot, and HistogramPlot which summarizes
a dataframe for further analytic studies.

We can also create more complex components by com-
bining these tools, for example, we can create a hierarchical
clustering workflow using the GraphCluster, Subgraph, and
Query components as shown in Figure 3. In this workflow,
the GraphCluster is configured with a maximum of two
clusters. Then, we use the cluster assignment to select the
vertices that belong to one cluster and feed that to Subgraph
along with the cluster graph. Subgraph partitions the given
graph into two subgraphs, each belonging to one cluster.
Finally, we apply GraphCluster to each of these subgraphs.

IV. USE CASES

In order to show the expressiveness of the Graph-
Flow components, we construct different workflows to
study the structural properties of graphs constructed from
the Wikipedia datasets3. This dataset is a crowd-source
gathered information from Wikipedia and includes sev-
eral data files such as page links and abstracts. Each
line in the page link dataset contains a pair of URIs
such that the second URI appears in the Wikipedia
Web page of the first URI. As an example of URIs,
”http://dbpedia.org/resource/Stanford University” is the URI
of Stanford University Wikipedia page. The abstracts in-
cludes the URI of a Wikipedia page and the main section
of each page.

In order, to construct the Wikipedia graph, we assign
a unique ID to each URI, which identifies a vertex in
the graph. Two vertices are connected if the pairs of their
URIs appear together in the page links dataset. We simply
ignore the order of URIs in each pair, so the final graph is
undirected. The constructed graph consists of more than 20
million vertices and 159 million edges. Moreover, we keep
the URIs and the assigned IDs in a CSV file as URI data file,

3http://wiki.dbpedia.org/

Figure 4. CDF of the shortest path length from the all nodes of the graph to
vertices of Harvard University, Stanford University, University of Oregon,
and Seattle University.

Figure 5. The workflow of finding the CDFs of shortest paths.

which we use for finding the corresponding URI assigned
to each vertex.

For these experiments, we ran the cluster system (Fig-
ure 1) on the ACISS cluster4, and we ran the Galaxy front-
end on a laptop. We used five Spark nodes, each running on
an Intel(R) Xeon(R) CPU X5650@2.67GHz with access to
a total of 50GB of memory.

A. Degree Distribution

Degree distribution is well-studied metric for graphs. In
order to find the degree distribution, we first use the Node
Degree components to get the degree of each vertex as a
CSV file with schema ”vertex,degree”, then the following
SQL queries gives us the distribution:

SELECT degree, count(degree)
FROM degreeTable
GROUP BY degree,

where the degreeTable is the relation name that we use to
register the input degree CSV file. Finally we redirect the
output to the plotting component.

The degree distribution of Wikipedia graphs mostly fol-
lows power-law degree distribution, Figure 8.

B. Shortest-Path Length Distribution

Shortest paths length in a graph has been used for defining
the closeness centrality, which shows the relative positions of
a given vertex with respect to all other vertices in the graph.

4http://aciss-computing.uoregon.edu/



Figure 6. The workflow of coarsening a graph using clustering.

Figure 7. CDF of the shortest path length in the coarse graph.

However, looking at the shortest-path length distribution is
more informative. The ShortestPath component generates
the shortest path lengths from each vertex in the graph to
a set of predefined landmarks. We use the set of vertices
corresponding to different universities as landmarks, and
generate the cumulative density function (CDF) for each
of these universities. Figure 4 shows these CDFs, which
indicate the closeness of the landmarks with respect to other
vertices in the graph. For example, approximately 45% of
shortest paths toward the Standford University page have
length smaller or equal to 3, while this value is only 20%
for Seattle University.

C. Coarsening

Coarsening of very large graphs enables analysis with
fewer resources. However, the coarsening process should
preserve the properties of the original graph. For example,
suppose we are interested in a subgraph of the Wikipedia
graph that includes the pages of universities, colleges, insti-
tutes, and related pages. We select the pages if their URIs
include University, Institute, or College, and refer to them as
academic pages. Using the Subgraph component may result
in removing all pages not belonging to set of vertices of
the interest and ignoring their effect on the coarse graph.
For example, the Oregon Ducks Football team page will
not appear in the set of vertices and Subgraph ignores the
paths that connected University of Oregon to universities
thorough their football pages. Therefore, we need to find
a community around each page of interest. This is similar
to local clustering. For this purpose, we modify the label
propagation algorithm and put a weight on each label.

Setting uniform weights reduces the local label propagation
to original label propagation. For our purpose, we set the
weights of labels belonging the academic pages to large
values, while all other weights are set to one. This forces
communities to be formed around the academic pages.

We feed the output of the local label propagation al-
gorithm, which is a cluster graph (where the attribute of
every vertex is its cluster id) to the coarsening component
and obtain its largest connected components. This workflow
is shown in Figure 6. The academic pages include about
140K pages, however, the largest connected component of
the coarse graph has only 14K vertices, comparing to the
20M vertices of the original Wikipedia graph. To check
whether the coarse graph preserves the structure, we look
at the CDF of the shortest paths of the same universities
studied in previous section. To do so, we can easily feed the
output of the coarsening workflow, Figure 6, to the shortest
path workflow, Figure 5. Figure 7 shows the resulting CDF
of the shortest paths to the given landmarks, indicating that
the coarse graph has structure similar to that of the original
graph.

D. Pagerank Centrality

PageRank is a well-known variation of eigenvector cen-
trality. With PageRank, we can sort the vertices based on
their rank score. Our goal in this use case is to rank
universities based on their appearance in the Wikipedia
using the PageRank algorithm [23]. Therefore, the rank of
a university depends on the Wikipedia pages that have links
to the Wikipedia page of the university and importance of
those pages based on the ranking.

To find the Wikipedia pages of universities we simply use
the URI name and look for related words such as University,
Institute, or College. An alternative approach would be to
use the abstract file, but here the URI name seems sufficient.
Therefore the result of the search is a dataframe that includes
the ID and URI of universities.

Figure 9 shows the workflow of the experiment. The
graph dataset points to the edge-view of the Wikipedia graph
constructed from the Pagelink file, and the CSV dataset
points to the URI data file.

The PageRank tool ranks the vertices of the Wikipedia
graph, and the output dataframe is given to JoinQuery tool.
The SQL query given to the JoinQuery joins two dataframes,
so we access the URI of each vertex as well as its rank.
We can then restrict the results to the URIs. The JoinQuery
register the output of the PageRank and Query tools as
relational tables ranks and univ, respectively, and runs the
following SQL query on them:

SELECT name, rank from uri, ranks
WHERE ranks.vertex = uri.vertex
AND (name LIKE "%University%"
OR name LIKE "%Institute%"



Figure 8. The degree distribution of Wikepedia graph along with the corresponding workflow.

Figure 9. The workflow of ranking universities using Wikipedia graph.

OR name LIKE "%College%" )
ORDER BY ranks.rank DESC limit 100

Table I includes the top 10 of the final ranking result
produced by our example workflow, the Wikipedia ranking
reported by Lages et al. [23], and the QS survey-based
ranking [24]. The Wikipedia-based top 10 lists have nine
common entries. The difference in Wikipedia-based rankings
is most likely attributable to the fact that we only used
English Wikipedia pages while Lages et. al use all provided
Wikipedia pages.

V. CONCLUSION

We introduced the GraphFlow toolkit, a workflow-based
system for large-scale distributed graph analysis. GraphFlow
provides the user with a set of Spark-based tools that can
be combined together using the intuitive Galaxy workflow

manger in order to describe complex data science experi-
ments. Using GraphFlow, researchers can re-run their com-
plex experiments with different parameter settings and over
different input data. Moreover, workflows can be shared,
reused, or composed into larger applications, as shown in the
case studies. GraphFlow hides the complexity of interacting
with cluster systems and data-parallel processing frame-
works, significantly simplifying large-scale graph analysis.

REFERENCES

[1] B. H. Junker and F. Schreiber, Analysis of Biological Net-
works (Wiley Series in Bioinformatics). New York, NY, USA:
Wiley-Interscience, 2008.

[2] S. Wasserman and K. Faust, Social network
analysis: Methods and applications. Cambridge
university press, 1994, vol. 8. [Online]. Available:
http://scholar.google.com/scholar.bib?q=info:gET6m8icitMJ:
scholar.google.com/&output=citation&hl=en&as sdt=0,5&
as vis=1&ct=citation&cd=0

[3] E. Stattner and N. Vidot, “Social network analysis in epi-
demiology: Current trends and perspectives,” in Research
Challenges in Information Science (RCIS), 2011 Fifth Inter-
national Conference on, May 2011, pp. 1–11.

[4] H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai,
“Lethality and centrality in protein networks,” Nature, vol.
411, no. 6833, pp. 41–42, May 2001. [Online]. Available:
http://dx.doi.org/10.1038/35075138

[5] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee, “Measurement and analysis of online
social networks,” in Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’07. New
York, NY, USA: ACM, 2007, pp. 29–42. [Online]. Available:
http://doi.acm.org/10.1145/1298306.1298311



Table I
TOP 10 UNIVERSITIES FOUND USING WORKFLOW OF FIGURE 9 COMPARED TO WIKIPEDIA UNIVERSITY RANKING FROM [23] AND THE

SURVEY-BASED RANKINGS [24].

Ranking from [23] GraphFlow QS Ranking [24]
1st University of Cambridge Harvard University Massachusetts Institute of Technology
2nd University of Oxford University of Oxford Stanford University
3rd Harvard University Columbia University Harvard University
4th Columbia University University of Cambridge University of Cambridge
5th Princeton University Yale University California Institute of Technology
6th Massachusetts Institute of Technology Stanford University University of Oxford
7th University of Chicago University of California, Berkeley University College London
8th Stanford University Massachusetts Institute of Technology ETH Zurich
9th Yale University University of Michigan Imperial College London
10th University of California, Berkeley Princeton University University of Chicago

[6] K. Mehlhorn and U. Meyer, “External-memory breadth-first
search with sublinear I/O,” in Proceedings of the 10th Annual
European Symposium on Algorithms, ser. ESA ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 723–735. [Online].
Available: http://dl.acm.org/citation.cfm?id=647912.740673

[7] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and
H. Yu, “Turbograph: A fast parallel graph engine handling
billion-scale graphs in a single PC,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge
discovery and data mining, Chicago, IL, USA, 2013, pp. 77–
85.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[9] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix:
Big(ger) graph analytics on a dataflow engine,” Proceedings
of the VLDB Endowment, vol. 8, no. 2, pp. 161–172, 2014.

[10] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica, “GraphX: Graph processing in a
distributed dataflow framework,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Im-
plementation, ser. OSDI 14, Broomfield, CO, USA, 2014, pp.
599–613.

[11] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS:
A peta-scale graph mining system implementation and ob-
servations,” in Proceedings of the 9th IEEE International
Conference on Data Mining, ser. ICDM ’09, Miami, FL,
USA, 2009, pp. 229–238.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012.

[13] J. Goecks, A. Nekrutenko, J. Taylor et al., “Galaxy: A com-
prehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences,”
Genome Biol, vol. 11, no. 8, p. R86, 2010.

[14] T. Oztan, R. Sinkovitz, and T. Menezes, “Complex so-
cial science (CoSSci) gateway: Autocorrelation modeling,

kinship network modeling, k- and pairwise cohesion in
large networks & open opportunities for online education.
http://socscicompute.ss.uci.edu.”

[15] B. Liu, R. K. Madduri, B. Sotomayor, K. Chard, L. Lacin-
ski, U. J. Dave, J. Li, C. Liu, and I. T. Foster, “Cloud-
based bioinformatics workflow platform for large-scale next-
generation sequencing analyses,” Journal of biomedical in-
formatics, vol. 49, pp. 119–133, 2014.

[16] C. Sloggett, N. Goonasekera, and E. Afgan, “BioBlend:
automating pipeline analyses within galaxy and cloudman,”
Bioinformatics, vol. 29, no. 13, pp. 1685–1686, 2013.

[17] L. Pireddu, S. Leo, N. Soranzo, and G. Zanetti, “A Hadoop-
Galaxy adapter for user-friendly and scalable data-intensive
bioinformatics in Galaxy,” in Proceedings of the 5th ACM
Conference on Bioinformatics, Computational Biology, and
Health Informatics. ACM, 2014, pp. 184–191.

[18] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
recursive model for graph mining.” in SDM, vol. 4. SIAM,
2004, pp. 442–446.

[19] F. Lin and W. W. Cohen, “Power iteration clustering,” in
Proceedings of the 27th international conference on machine
learning (ICML-10), 2010, pp. 655–662.

[20] D. A. Spielmat and S.-H. Teng, “Spectral partitioning works:
Planar graphs and finite element meshes,” in Foundations of
Computer Science, 1996. Proceedings., 37th Annual Sympo-
sium on. IEEE, 1996, pp. 96–105.

[21] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 20, no. 2, pp. 172–188, 2008.

[22] J. Shi and J. Malik, “Normalized cuts and image segmen-
tation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 22, no. 8, pp. 888–905, 2000.

[23] J. Lages, A. Patt, and D. L. Shepelyansky, “Wikipedia ranking
of world universities,” arXiv:1511.09021 [cs.SI], 2015.

[24] Times Higher Education, “World university rankings,” https:
//www.timeshighereducation.com/world-university-rankings/
2017, 2016.


