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ABSTRACT
Many excellent open-source and commercial tools enable the
detailed measurement of the performance attributes of ap-
plications. However, the process of collecting measurement
data and analyzing it remains effort-intensive because of dif-
ferences in tool interfaces and architectures. Furthermore,
insufficient standards and automation may result in losing
information about experiments, which may in turn lead to
misinterpretation of the data and analysis results. Autoperf
aims to support the entire workflow in performance mea-
surement and analysis in a uniform and portable fashion, en-
abling both better productivity through automation of data
collection and analysis and experiment reproducibility.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Tools, Performance

Keywords
performance measurement, performance analysis

1. INTRODUCTION
The typical workflow of performance analysis involves sev-

eral steps. At the beginning, one must decide on the partic-
ular approach and tool for generating the performance data,
which can be achieved through instrumentation (from source
level to binary level) or sampling. Tools such as PDT [14]
provide source-level instrumentation, while MAQAO [8] and
Dyninst [4] can be used for binary instrumentation. TAU
[17] and HPCToolkit [1] are two of the best open-source tools
that can generate performance data for users. TAU supports
both instrumentation and sampling, but HPCToolkit is de-
signed only for sampling.
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Next, one must decide what to measure. In most cases,
this involves using hardware performance counters, or met-
rics derived from them. PAPI [5] is widely used as an ab-
straction layer to collect those counters in a (mostly) archi-
tecture-independent manner. In practice, however, due to
hardware restrictions (e.g., on Intel platforms), we cannot
measure all metrics simultaneously, either because there are
not enough PAPI-supported hardware counters, or some of
the counters cannot be grouped together for measurement.
In the latter case, metrics must be partitioned manually to
execute the same performance experiment multiple times,
with partial data collected in each iteration.

Now it is time to run the experiment. The exact way to do
so depends on the environment being used. For example, a
job control system may or may not be necessary, and differ-
ent computation environments can use different job control
systems. Moreover, some common tools (e.g. mpiexec for
MPI applications) depend on special (non-standard) argu-
ments to function properly or require a background process
to be running (e.g., mpd).

Next, data collected from each iteration of the experi-
ment must be aggregated for subsequent analysis. Two com-
mon analysis tasks are to calculate derived metrics and to
compare two distinct experiments to find correlations. The
open-source PerfExplorer [12] framework works with TAU
and provides many useful analyses. It also exports a Jython
API to enable scripting, but requires some training to learn
how to use effectively.

In practice, the workflow listed above is tedious and error-
prone. Partitioning metrics manually is laborious, even with
the help of papi_event_chooser and must be repeated for
each different architecture. Writing and debugging scripts
for each iteration is time consuming. Running in a differ-
ent computational environment requires porting of the mea-
surement infrastructure and repetition of some of the steps
(e.g., selecting metrics and grouping of counters). General
performance tools don’t provide consistent, easy-to-use, yet
flexible interfaces to support specific analysis requirements
on a variety of platforms.

In this paper we introduce the Autoperf tool for creat-
ing and managing performance experiments, including data
postprocessing and analysis [3]. The main contributions
of this work are (1) the automation of previously manual
and error-prone portions of the performance measurement
and analysis workflow; (2) simple experiment configuration
specification that encapsulates sufficient information to au-
tomate the execution of performance experiments and sub-
sequent data analysis; and (3) a modular implementation



that allows any part of the workflow to be extended, e.g., by
integrating new performance measurement tools or analyses.
These are the first steps toward addressing the currently un-
solved challenge of efficiently collecting and analyzing fine-
grained application performance data on diverse platforms
supporting different sets of performance measurement tools
in a reliable and reproducible manner.

1.1 Related Work
PerfExpert [6] is a tool whose goal is to automatically di-

agnose core, socket, and node performance bottlenecks in
parallel HPC applications. The user interface is intention-
ally simple. Similar to Autoperf, PerfExpert relies on other
tools to perform the actual measurements but to our knowl-
edge is limited to sampling-only data collection (through
HPCToolkit and PAPI). While some of the goals of Autoperf
are similar, our approach focuses on ease of extensibility (to
encode and share expert knowledge), consistent experiment
representation across platforms and applications, ultimately
leading to reproducible (and reusable) experiments. Autop-
erf is also tool-agnostic and can be interfaced with different
measurement and analysis tools.

A number of commercial tools provide some experiment
management, and various analysis and visualization capa-
bilities, including Intel’s VTune [13], Vampir [15], Cray’s
CrayPAT [7], NVIDIA’s Nsight [16], and ThreadSpotter1 [9].
These tools offer many valuable capabilities but are limited
to specific platforms, are closed source, or cannot be easily
extended.

1.2 Autoperf
Autoperf provides a simple format for defining the exper-

iment environment and data to be collected, and interfaces
to TAU, PAPI, HPCToolkit, and PerfExplorer to perform
the measurements and subsequent analyses. The current ca-
pabilities include the collection of detailed hardware perfor-
mance counters, derived performance metrics computations,
statistical analysis, and preliminary support for comparisons
of different code versions.

Autoperf is implemented as an extensible, modular Py-
thon package that significantly automates performance ex-
periments. For data collection and some of the analysis, Au-
toperf leverages other tools, adding automation for the por-
tions of the performance measurement and analysis workflow
that are not supported by the underlying tools. The ulti-
mate usability goals are to (1) reduce or eliminate manual
work for users; (2) to enable analyses to be saved, reused,
and extended; and (3) to provide the same interface through
which multiple performance tools can be used.

2. DESIGN
Autoperf comprises four components: experiment specifi-

cation, job submission, data collection, and analysis engine,
implemented as independent Python modules.

2.1 Experiment Specification
Some basic information is required before Autoperf can

run the experiment, e.g., the commands used to invoke the
application, where to find other dependent tools, and which
metrics to collect. The metrics specification is one of the

1ThreadSpotter is now available as open source and a great
target for integration with Autoperf.

types of inputs that can be further abstracted in the future,
but at the moment users can select metrics they are inter-
ested in, or use one of a number of examples included in
Autoperf as a template for their own experiments.

Instead of relying on a lot of information passed through
the command line or environment variables, Autoperf reads
the experiment specification from a configuration file. Using
files makes the sharing and reuse of configurations easy, en-
ables change tracking, collecting and recording of all relevant
provenance data at the time the experiment was performed.
The format of the configuration file resembles a classic Win-
dows INI file (and uses the Python builtin ConfigParser
module), with additional hierarchy semantics between sec-
tions defined by Autoperf, which we illustrate with the fol-
lowing example using the miniFE Mantevo mini app [10].

[Main]

Experiments = miniFE_20 miniFE_50

[Experiments]

execmd = ./miniFE

[Experiments.miniFE_20]

exeopt = nx=20

[Experiments.miniFE_50]

exeopt = nx=50

Two miniFE experiments are defined in the [Main] sec-
tion. Experiment names can be arbitrary strings and can op-
tionally include Python code segments defining certain Au-
toperf keywords to allow more flexible configuration settings
(e.g., miniFE_20 {threads = [1] + range(2,9,2)} will re-
sult in five experiments with 1,2,4,6, and 8 threads). The
command used to run the application, in this case miniFE,
is specified in the [Experiments] section. However, in order
to provide different arguments to miniFE_20 and miniFE_50,
we extend the [Experiments] section by adding the corre-
sponding experiment name as a postfix to create a derived
section and list experiment-specific options there. Options
that are redefined in a derived section override those appear-
ing in the parent sections. The same approach applies to
other configuration file sections, not just to [Experiments],
keeping the configuration file concise, expressive, and re-
usable.

Many options can be specified when setting up the ex-
periment environment, which can add to the manual effort
required to create experiments. Autoperf attempts to mini-
mize this effort by providing reasonable defaults for most of
the environemnt setup and also some limited Python script
embedding. Autoperf composes the execmd and exeopt ac-
cordingly so that the application can be launched in a de-
sired manner. For instance, if “mpi = yes” is specified in
the configuration file, Autoperf will use the MPI launcher
(mpirun or mpiexec) to run the testing application. When
using TAU for sampling-based measurement, Autoperf calls
tau_exec with the correct options and environment settings.
Complex configurations that cannot be specified with a sin-
gle option are grouped together to create a new standalone
section.

2.2 Job Submission
Many HPC systems use a job scheduler such as PBS to

allocate and manage system resources. Users are typically
required to write a script and submit it to the job sched-
uler, which allocates nodes and other necessary resources
and then launches the application. Clusters may also have



some specific local configuration requirements, which need
special treatment. For example, on the University of Ore-
gon ACISS cluster, the --mca btl_tcp_if_include torbr

command-line option must be specified for mpiexec in order
to launch a MPI application. These platform-dependent set-
tings are abstracted in the Platform configuration section.
Each Platform option value is implemented as a separate
Python module, which handles environment-specific details.
The Queue option itself has a number of settings, so it is
described in its own (optional) subsection, [Queue].

[Experiments]

Platform = aciss

[Platform]

Queue = PBS

[Queue]

nodes = 2

ppn = 12

walltime = 4:00:00

The above sections specify that the experiment will run
on ACISS, the job will be submitted by PBS, and required
computation resources are specified in the [Queue] section.
Autoperf then generates all required scripts and submits the
job. Autoperf also provides a way to examine the status of
running jobs that are part of specific experiments.

2.3 Data Collection
Autoperf relies on existing performance tools to collect

performance data. Currently, TAU and HPCToolkit are
supported, and others can be added relatively easily. All
collected data are converted to TAU PPK format.

TAU supports source-level instrumentation which requires
recompilation of the application. Providing general support
for the build process of arbitrary applications is a complex
task, hence this part is left to users at present. However,
we provide a hook in the configuration file, allowing an arbi-
trary user provided command to be executed before running
the experiment. The example below shows the use of this
builder option:

[Experiments]

builder = make -C .. miniFE

One major prerequisite for running a performance experi-
ment manually is the selection of hardware counter-based
metrics that can be measured simultaneously. Autoperf
eliminates this tedious task by automatically partitioning
both PAPI and the NVIDIA CUDA Profiling Interface (CUP-
TI) counters. As we show in the next section, after a list of
counters for analysis is specified, Autoperf checks whether
they can be measured together. If not, Autoperf figures out
how to partition the counters into compatible groups and
run a sub-experiment for each of them. When all the sub-
experiments finish, collected partial data is aggregated to
create the complete result of the original experiment.

Another typical workflow step is to calculate derived met-
rics. Autoperf resolves dependencies among metrics to mea-
sure all quantities required for specific derived metrics com-
putations. By adding metric specifications (i.e., mathemat-
ical expressions used to calculate derived metrics), into the
metric database folder, derived metrics can be used as raw
data metrics. Furthermore, derived metrics can refer to each
other in their specifications. The sample metric specification
below shows how to use several PAPI counters and system-
specific metadata (e.g., CPU frequency or other architec-

tural parameters determined through microbenchmarks) to
compute a derived metric, floating-point inefficiency.

$ cat util/metric_spec/FP_INEFFICIENT2

((PAPI_FP_INS/PAPI_TOT_INS)*(PAPI_RES_STL/

PAPI_TOT_CYC))*(PAPI_TOT_CYC/META_CPU_HZ)

Should saving performance data into permanent storage
for later use be preferable, TAUdb [11] provides such a fa-
cility. Data can be stored in a shared TAUdb database or
a user-created local database by running taudb_configure

to create a TAUdb configuration file that specifies how to
connect to the database. After data are collected, Autoperf
will load data into the database automatically according to
its specified configuration file. Users do not need to know
how to use databases.

[Experiments]

Datastore = taudb

[Datastore]

config = my_taudb_config_name

Several metadata are saved when collected performance
data are loaded into the database. The loaded data can be
queried using the metadata, or checked out using an unique
instance id, which is its timestamp.

2.4 Analysis Engine
Autoperf provides two interfaces to support customized

analysis on performance data.

2.4.1 PerfExplorer Script
Because performance data are converted to TAU PPK

format and loaded into TAUdb, the Java-based PerfExplorer
framework is a natural tool choice for providing a number
of analyses. When the PerfExplorer builtin functionality is
insufficient, one option is to write a customized Jython script
that uses the PerfExplorer analysis API.

Autoperf provides easy interfaces to several PerfExplorer
scripts (and we continuously add more). For example, Au-
toperf can find collected data specified in the experiment
configuration, and retrieve it from the TAUdb database if
it is not available on the local disk. Autoperf also helps
transform raw data into the PerfExplorer API internal data
structures, enabling users to analyze data directly without
requiring a database connection.

The sample below shows how Autoperf compares miniFE_-
50 with the latest instance of miniFE_20 (see Fig. 1). The
comparison finds the top 10 methods that produce the big-
gest difference for the listed metrics, and then save the re-
sult summary in a text file and generate a histogram chart
for each of the listed metrics. Autoperf hides the details of
where or how to retrieve the latest data for miniFE_20. This
example also illustrates that a derived metric can be used
along with regular metrics indistinguishably providing that
the metric is properly specified in the experiment configu-
ration. While here we compare experiments with different
data inputs, the same method can be used to compare differ-
ent implementations based on an unlimited, extensible set
of metrics of interest.

[Experiments.miniFE_50]

Analyses = compare2

[Analyses.compare2.miniFE_50]

base = miniFE_20

instance = last

threshold = 10



Figure 1: A visual summary of the Mantevo exper-
iment example showing floating-point instructions
(y-axis) for the top 10 functions for each experiment
(w.r.t. largest difference in mean floating-point in-
structions per function).

metrics = PAPI_FP_INS FP_INEFFICIENT2

Many existing PerfExplorer scripts can be merged into the
Autoperf framework without any change.

2.4.2 SciPy
All collected data are converted to PPK format. Instead of

always depending on PerfExplorer to load data from PPK
archive, Autoperfhas its own PPK parser. This provides
the same set of capabilities as the PerfExplorer scripting
interface, plus several other advantages.

First, using NumPy arrays for all data enables the use of
packages such as SciPy or scikit-learn. Second, PerfExplorer
scripts require explicit API calls to the Java implementa-
tion to calculate each derived metric. By contrast, the PPK
parser interprets derived metric specification and applies it
automatically to the data. Hence, derived metrics are cal-
culated and populated without extra effort from users or
the JVM overhead. Finally, one inconvenience of sampling
compared to instrumentation is that samples may occur in
third party libraries for which no function symbols are avail-
able, resulting in data that is of little use without further
processing. Autoperf unrolls the call stack and backtraces
the call path to the first method that is of interest, and
then attributes collected data to this method. This ensures
hotspots in the code can be traced.

3. AUTOPERF WORKFLOW
The first step in using Autoperf is to write a configuration

file which specifies following:

• How to find and run the application (executable, com-
mand-line arguments, symbolic links);

• The environment used to run the application (e.g.,
PBS);

• The tool to use for data collection (e.g., TAU);

• The analysis you want to apply on collected data (e.g.,
correlation).

The complete example is shown below.

1 [Main]
2 Experiments = miniFE_20
3 miniFE_50
4

5 [Experiments]
6 rootdir = output
7 tauroot = ~/tau/x86_64
8 Platform = aciss
9 Tool = tau

10 Datastore = taudb
11 mpi = yes
12 execmd = ./miniFE.x
13

14 [Experiments.miniFE_20]
15 exeopt = nx=20
16 Analyses = metrics
17

18 [Experiments.miniFE_50]
19 exeopt = nx=50
20 Analyses = compare2

21 [Platform]
22 Queue = PBS
23

24 [Datastore]
25 config = demo
26

27 [Tool.tau]
28 mode = sampling
29 TAU_EBS_UNWIND = 1
30

31 [Analyses.metrics]
32 metrics = PAPI_FP_INS
33 PAPI_L1_DCM
34

35 [Analyses.compare2]
36 metrics = PAPI_FP_INS
37 FP_INEFFICIENT2
38 base = miniFE_20
39 instance = last
40 mode = absolute
41 throttle = 1000
42 threshold = 10

Next, the user launches the driver script autoperf to run
all the experiments included in the configuration file

$ autoperf -f <cfg_file>

A simlpe 20-line configuration file can produce tens or
hundreds of individual jobs, which are generated, tracked,
and processed automatically by Autoperf. The following
command can be used to check the status of experiments:
$ autoperf -c
Experiment Instance Job ID Status
--------------------------------------------------------------
miniFE_20 2014-11-04-15-40-16-666930 PBS:558834.hn1 Running
miniFE_50 2014-11-04-15-40-19-478332 PBS:558835.hn1 Running

After the experiment has finished running, the user can
analyze the results with the “autoperf -y” command. To
combine the measurement and analysis steps, Autoperfcan
be invoked with “autoperf -b”. In this case, Autoperfwill
submit the job(s), blocking until they complete, and then
performing the analysis on the results.

4. EXAMPLE USE CASE
We demonstrate some of the Autoperf capabilities by an-

alyzing a test application developed for the Geant4 vector
prototype. Geant4 [2] is a toolkit for the simulation of the
passage of particles through matter, which is widely used in
high energy physics (it is the reference simulation engine for
LHC experiments at CERN and other HEP labs), medicine,
and other application areas. The vector prototype is one of
the ongoing parallelization efforts in the Geant4 community
whose goal is to create an implementation that performs well
on both modern CPUs and hybrid systems including accel-
erators such as the Intel Xeon Phi.The code incorporates
explicit vector instructions.

We ran all experiments on the University of Oregon ACISS
cluster (each node is a 12-core Xeon X5650@2.67GHz with
72GB DRAM), using 4 threads. The code was compiled
with GCC version 4.8.3.

Table 1 lists the top five functions sorted by total number
of cycles in the unoptimized (compiled with -O0) version.
The wall-clock times of the different versions were approx-
imately 5, 2.25, and 2.3 minutes for -O0, -O2, and -O3, re-
spectively.



Figure 2: Each bubble corresponds to a function. The left column corresponds to code compiled with the -O2 compiler

flag (green bubbles), while the right column shows the same metrics for -O3 (green bubbles). The same baseline -O0

version is shown in yellow. Each bubble’s diameter is proportional to the percentage of total cycles for each function.

The top five (yellow) functions (in -O0, Table 1) and their optimized (green) versions are labeled 1, 2, 3, 4, 5 (see Table 1).

The rows are: (1) stalls per instruction vs total cycles—O2 unexpectedly increases stalls per instruction in two of the

functions; (2) level-1 instruction cache misses vs stall cycles—O3 eliminates most instruction misses, but with little

impact on stalls, showing that they are not a major contributor to stalls; (3) level-1 data cache misses vs stall cycles—O3

increases L1 misses in some functions, but with little effect on overall stalls.



Table 1: Top five functions (total cycles)
Stall Total Function
Cycles Cycles Name
(×1010) (×1010)

3.13 6.65 GeantTrack v::ComputeTransportLength

2.01 4.28 GeantTrack v::PropagateInVolumeSingle

1.80 3.84 WorkloadManager::TransportTracks

1.55 3.44 GeantTrack v::AddTracks

1.48 3.36 TOPLEVEL

Figure 2 illustrates some of the automatically generated
results. While this example is a comparison between ver-
sions compiled with different optimization options, in gen-
eral the same analyses can be performed for any distinct code
versions, whether manually created (e.g., comparing with an
older version of the same application or an alternate exper-
imental branch) or synthesized with a tool (compiler, auto
tuner), the same analysis capabilities are available and the
Autoperf configuration file is largely the same.

5. CONCLUSIONS AND FUTURE WORK
We have introduced the Autoperf tool for managing per-

formance experiments by providing consistent interfaces to
common measurement tools and automating time-consuming
and error-prone portions of the performance analysis work-
flow. The tool is in the early stages of development and
we will be expanding it with more reusable analysis mod-
ules and platform configurations. Thanks to the the ease of
performance data gathering and analysis, large quantities of
data can be generated quickly. We will extend the current
simple correlation analysis to enable the automated classifi-
cation of significant metrics (raw hardware counters or de-
rived metrics), i.e., estimating the sensitivity of a particular
response (e.g., execution time) to changes in application be-
havior. We will also add support for more performance mea-
surement and analysis tools (e.g., ThreadSpotter) as well as
modeling interfaces (e.g., Descartes Query Language).
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P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, and
F. J. Peters, editors, Parallel Computing:
Architectures, Algorithms and Applications, volume 15
of Advances in Parallel Computing, pages 637–644.
IOS Press, 2007.

[16] NVIDIA. NVIDIA Visual Profiler. https:
//developer.nvidia.com/nvidia-visual-profiler.

[17] S. S. Shende and A. D. Malony. The TAU parallel
performance system. Int. J. High Perform. Comput.
Appl., 20(2):287–311, May 2006.


